MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpw Structured version   Visualization version   GIF version

Theorem iinpw 5035
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem iinpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4895 . . . 4 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
2 velpw 4538 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
32ralbii 3092 . . . 4 (∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦𝑥)
41, 3bitr4i 277 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
5 velpw 4538 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
6 eliin 4929 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥))
76elv 3438 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
84, 5, 73bitr4i 303 . 2 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥)
98eqriv 2735 1 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  𝒫 cpw 4533   cint 4879   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-int 4880  df-iin 4927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator