![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinpw | Structured version Visualization version GIF version |
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
iinpw | ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4972 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
2 | velpw 4613 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) | |
3 | 2 | ralbii 3093 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
5 | velpw 4613 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ⊆ ∩ 𝐴) | |
6 | eliin 5004 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥)) | |
7 | 6 | elv 3486 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
8 | 4, 5, 7 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥) |
9 | 8 | eqriv 2734 | 1 ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2108 ∀wral 3061 Vcvv 3481 ⊆ wss 3966 𝒫 cpw 4608 ∩ cint 4954 ∩ ciin 5000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3483 df-ss 3983 df-pw 4610 df-int 4955 df-iin 5002 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |