| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinpw | Structured version Visualization version GIF version | ||
| Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| Ref | Expression |
|---|---|
| iinpw | ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4930 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
| 2 | velpw 4570 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) | |
| 3 | 2 | ralbii 3076 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
| 5 | velpw 4570 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ⊆ ∩ 𝐴) | |
| 6 | eliin 4962 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥)) | |
| 7 | 6 | elv 3455 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
| 8 | 4, 5, 7 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥) |
| 9 | 8 | eqriv 2727 | 1 ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3916 𝒫 cpw 4565 ∩ cint 4912 ∩ ciin 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3933 df-pw 4567 df-int 4913 df-iin 4960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |