MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunpwss Structured version   Visualization version   GIF version

Theorem iunpwss 5032
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpwss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssiun 4972 . . 3 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
2 eliun 4925 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
3 velpw 4535 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
43rexbii 3177 . . . 4 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
52, 4bitri 274 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
6 velpw 4535 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
7 uniiun 4984 . . . . 5 𝐴 = 𝑥𝐴 𝑥
87sseq2i 3946 . . . 4 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
96, 8bitri 274 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝑥)
101, 5, 93imtr4i 291 . 2 (𝑦 𝑥𝐴 𝒫 𝑥𝑦 ∈ 𝒫 𝐴)
1110ssriv 3921 1 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wrex 3064  wss 3883  𝒫 cpw 4530   cuni 4836   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-uni 4837  df-iun 4923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator