MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunpwss Structured version   Visualization version   GIF version

Theorem iunpwss 5130
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpwss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssiun 5069 . . 3 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
2 eliun 5019 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
3 velpw 4627 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
43rexbii 3100 . . . 4 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
52, 4bitri 275 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
6 velpw 4627 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
7 uniiun 5081 . . . . 5 𝐴 = 𝑥𝐴 𝑥
87sseq2i 4038 . . . 4 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
96, 8bitri 275 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝑥)
101, 5, 93imtr4i 292 . 2 (𝑦 𝑥𝐴 𝒫 𝑥𝑦 ∈ 𝒫 𝐴)
1110ssriv 4012 1 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wrex 3076  wss 3976  𝒫 cpw 4622   cuni 4931   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932  df-iun 5017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator