MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunpwss Structured version   Visualization version   GIF version

Theorem iunpwss 5057
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpwss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssiun 4997 . . 3 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
2 eliun 4945 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
3 velpw 4554 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
43rexbii 3079 . . . 4 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
52, 4bitri 275 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
6 velpw 4554 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
7 uniiun 5009 . . . . 5 𝐴 = 𝑥𝐴 𝑥
87sseq2i 3959 . . . 4 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
96, 8bitri 275 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝑥)
101, 5, 93imtr4i 292 . 2 (𝑦 𝑥𝐴 𝒫 𝑥𝑦 ∈ 𝒫 𝐴)
1110ssriv 3933 1 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wrex 3056  wss 3897  𝒫 cpw 4549   cuni 4858   ciun 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-ss 3914  df-pw 4551  df-uni 4859  df-iun 4943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator