Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunpwss | Structured version Visualization version GIF version |
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
iunpwss | ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun 4976 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) | |
2 | eliun 4928 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) | |
3 | velpw 4538 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) | |
4 | 3 | rexbii 3181 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
5 | 2, 4 | bitri 274 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
6 | velpw 4538 | . . . 4 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) | |
7 | uniiun 4988 | . . . . 5 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
8 | 7 | sseq2i 3950 | . . . 4 ⊢ (𝑦 ⊆ ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
9 | 6, 8 | bitri 274 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
10 | 1, 5, 9 | 3imtr4i 292 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
11 | 10 | ssriv 3925 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 df-iun 4926 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |