| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunpwss | Structured version Visualization version GIF version | ||
| Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| iunpwss | ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssiun 5013 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) | |
| 2 | eliun 4962 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) | |
| 3 | velpw 4571 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) | |
| 4 | 3 | rexbii 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 5 | 2, 4 | bitri 275 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 6 | velpw 4571 | . . . 4 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴) | |
| 7 | uniiun 5025 | . . . . 5 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 8 | 7 | sseq2i 3979 | . . . 4 ⊢ (𝑦 ⊆ ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
| 9 | 6, 8 | bitri 275 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥) |
| 10 | 1, 5, 9 | 3imtr4i 292 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴) |
| 11 | 10 | ssriv 3953 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-pw 4568 df-uni 4875 df-iun 4960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |