HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh1 Structured version   Visualization version   GIF version

Theorem fh1 31500
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh1
StepHypRef Expression
1 chincl 31381 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 31381 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 31239 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 594 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 676 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 31239 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 31381 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 591 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 31106 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 510 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1112 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 479 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 31422 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 479 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 incom 4199 . . . . . . . 8 (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴)
1716a1i 11 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴))
18 chdmj1 31411 . . . . . . . . 9 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
191, 2, 18syl2an 594 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
20 chdmm1 31407 . . . . . . . . 9 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
21 chdmm1 31407 . . . . . . . . 9 ((𝐴C𝐶C ) → (⊥‘(𝐴𝐶)) = ((⊥‘𝐴) ∨ (⊥‘𝐶)))
2220, 21ineqan12d 4212 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2319, 22eqtrd 2765 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2417, 23ineq12d 4211 . . . . . 6 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
25243impdi 1347 . . . . 5 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
2625adantr 479 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
27 inass 4218 . . . . . . 7 (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
28 cmcm2 31498 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
29 choccl 31188 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
30 cmbr3 31490 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3129, 30sylan2 591 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3228, 31bitrd 278 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3332biimpa 475 . . . . . . . . . . . 12 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
34333adantl3 1165 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
3534adantrr 715 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
36 cmcm2 31498 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐴 𝐶 (⊥‘𝐶)))
37 choccl 31188 . . . . . . . . . . . . . . 15 (𝐶C → (⊥‘𝐶) ∈ C )
38 cmbr3 31490 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐶) ∈ C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
3937, 38sylan2 591 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4036, 39bitrd 278 . . . . . . . . . . . . 13 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4140biimpa 475 . . . . . . . . . . . 12 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
42413adantl2 1164 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4342adantrl 714 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4435, 43ineq12d 4211 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶))))
45 inindi 4225 . . . . . . . . 9 (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
46 inindi 4225 . . . . . . . . 9 (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶)))
4744, 45, 463eqtr4g 2790 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
4847ineq2d 4210 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
4927, 48eqtrid 2777 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
50 in12 4219 . . . . . 6 ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
5149, 50eqtrdi 2781 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
52 chdmj1 31411 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (⊥‘(𝐵 𝐶)) = ((⊥‘𝐵) ∩ (⊥‘𝐶)))
5352ineq2d 4210 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
54 chocin 31377 . . . . . . . . . . 11 ((𝐵 𝐶) ∈ C → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
556, 54syl 17 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
5653, 55eqtr3d 2767 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = 0)
5756ineq2d 4210 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ 0))
58 chm0 31373 . . . . . . . 8 (𝐴C → (𝐴 ∩ 0) = 0)
5957, 58sylan9eqr 2787 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
60593impb 1112 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6160adantr 479 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6251, 61eqtrd 2765 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = 0)
6326, 62eqtrd 2765 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
64 pjoml 31318 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6513, 15, 63, 64syl12anc 835 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6665eqcomd 2731 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3943  wss 3944   class class class wbr 5149  cfv 6549  (class class class)co 7419   S csh 30810   C cch 30811  cort 30812   chj 30815  0c0h 30817   𝐶 ccm 30818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220  ax-hilex 30881  ax-hfvadd 30882  ax-hvcom 30883  ax-hvass 30884  ax-hv0cl 30885  ax-hvaddid 30886  ax-hfvmul 30887  ax-hvmulid 30888  ax-hvmulass 30889  ax-hvdistr1 30890  ax-hvdistr2 30891  ax-hvmul0 30892  ax-hfi 30961  ax-his1 30964  ax-his2 30965  ax-his3 30966  ax-his4 30967  ax-hcompl 31084
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-cn 23175  df-cnp 23176  df-lm 23177  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cfil 25227  df-cau 25228  df-cmet 25229  df-grpo 30375  df-gid 30376  df-ginv 30377  df-gdiv 30378  df-ablo 30427  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-vs 30481  df-nmcv 30482  df-ims 30483  df-dip 30583  df-ssp 30604  df-ph 30695  df-cbn 30745  df-hnorm 30850  df-hba 30851  df-hvsub 30853  df-hlim 30854  df-hcau 30855  df-sh 31089  df-ch 31103  df-oc 31134  df-ch0 31135  df-shs 31190  df-chj 31192  df-cm 31465
This theorem is referenced by:  cm2j  31502  fh1i  31503  chirredlem3  32274
  Copyright terms: Public domain W3C validator