HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh1 Structured version   Visualization version   GIF version

Theorem fh1 29976
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh1
StepHypRef Expression
1 chincl 29857 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 29857 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 29715 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 596 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 675 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 29715 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 29857 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 593 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 29582 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 512 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1114 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 481 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 29898 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 481 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 incom 4140 . . . . . . . 8 (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴)
1716a1i 11 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴))
18 chdmj1 29887 . . . . . . . . 9 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
191, 2, 18syl2an 596 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
20 chdmm1 29883 . . . . . . . . 9 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
21 chdmm1 29883 . . . . . . . . 9 ((𝐴C𝐶C ) → (⊥‘(𝐴𝐶)) = ((⊥‘𝐴) ∨ (⊥‘𝐶)))
2220, 21ineqan12d 4154 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2319, 22eqtrd 2780 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2417, 23ineq12d 4153 . . . . . 6 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
25243impdi 1349 . . . . 5 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
2625adantr 481 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
27 inass 4159 . . . . . . 7 (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
28 cmcm2 29974 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
29 choccl 29664 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
30 cmbr3 29966 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3129, 30sylan2 593 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3228, 31bitrd 278 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3332biimpa 477 . . . . . . . . . . . 12 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
34333adantl3 1167 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
3534adantrr 714 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
36 cmcm2 29974 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐴 𝐶 (⊥‘𝐶)))
37 choccl 29664 . . . . . . . . . . . . . . 15 (𝐶C → (⊥‘𝐶) ∈ C )
38 cmbr3 29966 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐶) ∈ C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
3937, 38sylan2 593 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4036, 39bitrd 278 . . . . . . . . . . . . 13 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4140biimpa 477 . . . . . . . . . . . 12 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
42413adantl2 1166 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4342adantrl 713 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4435, 43ineq12d 4153 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶))))
45 inindi 4166 . . . . . . . . 9 (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
46 inindi 4166 . . . . . . . . 9 (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶)))
4744, 45, 463eqtr4g 2805 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
4847ineq2d 4152 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
4927, 48eqtrid 2792 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
50 in12 4160 . . . . . 6 ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
5149, 50eqtrdi 2796 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
52 chdmj1 29887 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (⊥‘(𝐵 𝐶)) = ((⊥‘𝐵) ∩ (⊥‘𝐶)))
5352ineq2d 4152 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
54 chocin 29853 . . . . . . . . . . 11 ((𝐵 𝐶) ∈ C → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
556, 54syl 17 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
5653, 55eqtr3d 2782 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = 0)
5756ineq2d 4152 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ 0))
58 chm0 29849 . . . . . . . 8 (𝐴C → (𝐴 ∩ 0) = 0)
5957, 58sylan9eqr 2802 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
60593impb 1114 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6160adantr 481 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6251, 61eqtrd 2780 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = 0)
6326, 62eqtrd 2780 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
64 pjoml 29794 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6513, 15, 63, 64syl12anc 834 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6665eqcomd 2746 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  cin 3891  wss 3892   class class class wbr 5079  cfv 6432  (class class class)co 7271   S csh 29286   C cch 29287  cort 29288   chj 29291  0c0h 29293   𝐶 ccm 29294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952  ax-hilex 29357  ax-hfvadd 29358  ax-hvcom 29359  ax-hvass 29360  ax-hv0cl 29361  ax-hvaddid 29362  ax-hfvmul 29363  ax-hvmulid 29364  ax-hvmulass 29365  ax-hvdistr1 29366  ax-hvdistr2 29367  ax-hvmul0 29368  ax-hfi 29437  ax-his1 29440  ax-his2 29441  ax-his3 29442  ax-his4 29443  ax-hcompl 29560
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-omul 8293  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-acn 9701  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-cn 22376  df-cnp 22377  df-lm 22378  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cfil 24417  df-cau 24418  df-cmet 24419  df-grpo 28851  df-gid 28852  df-ginv 28853  df-gdiv 28854  df-ablo 28903  df-vc 28917  df-nv 28950  df-va 28953  df-ba 28954  df-sm 28955  df-0v 28956  df-vs 28957  df-nmcv 28958  df-ims 28959  df-dip 29059  df-ssp 29080  df-ph 29171  df-cbn 29221  df-hnorm 29326  df-hba 29327  df-hvsub 29329  df-hlim 29330  df-hcau 29331  df-sh 29565  df-ch 29579  df-oc 29610  df-ch0 29611  df-shs 29666  df-chj 29668  df-cm 29941
This theorem is referenced by:  cm2j  29978  fh1i  29979  chirredlem3  30750
  Copyright terms: Public domain W3C validator