HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh1 Structured version   Visualization version   GIF version

Theorem fh1 30602
Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh1
StepHypRef Expression
1 chincl 30483 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 30483 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 30341 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 597 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 677 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 30341 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 30483 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 594 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 30208 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 513 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1116 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 482 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 30524 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 482 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 incom 4162 . . . . . . . 8 (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴)
1716a1i 11 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴))
18 chdmj1 30513 . . . . . . . . 9 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
191, 2, 18syl2an 597 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
20 chdmm1 30509 . . . . . . . . 9 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
21 chdmm1 30509 . . . . . . . . 9 ((𝐴C𝐶C ) → (⊥‘(𝐴𝐶)) = ((⊥‘𝐴) ∨ (⊥‘𝐶)))
2220, 21ineqan12d 4175 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2319, 22eqtrd 2773 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2417, 23ineq12d 4174 . . . . . 6 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
25243impdi 1351 . . . . 5 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
2625adantr 482 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
27 inass 4180 . . . . . . 7 (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
28 cmcm2 30600 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
29 choccl 30290 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
30 cmbr3 30592 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3129, 30sylan2 594 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3228, 31bitrd 279 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3332biimpa 478 . . . . . . . . . . . 12 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
34333adantl3 1169 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
3534adantrr 716 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
36 cmcm2 30600 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐴 𝐶 (⊥‘𝐶)))
37 choccl 30290 . . . . . . . . . . . . . . 15 (𝐶C → (⊥‘𝐶) ∈ C )
38 cmbr3 30592 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐶) ∈ C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
3937, 38sylan2 594 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4036, 39bitrd 279 . . . . . . . . . . . . 13 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4140biimpa 478 . . . . . . . . . . . 12 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
42413adantl2 1168 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4342adantrl 715 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4435, 43ineq12d 4174 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶))))
45 inindi 4187 . . . . . . . . 9 (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
46 inindi 4187 . . . . . . . . 9 (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶)))
4744, 45, 463eqtr4g 2798 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
4847ineq2d 4173 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
4927, 48eqtrid 2785 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
50 in12 4181 . . . . . 6 ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
5149, 50eqtrdi 2789 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
52 chdmj1 30513 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (⊥‘(𝐵 𝐶)) = ((⊥‘𝐵) ∩ (⊥‘𝐶)))
5352ineq2d 4173 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
54 chocin 30479 . . . . . . . . . . 11 ((𝐵 𝐶) ∈ C → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
556, 54syl 17 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
5653, 55eqtr3d 2775 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = 0)
5756ineq2d 4173 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ 0))
58 chm0 30475 . . . . . . . 8 (𝐴C → (𝐴 ∩ 0) = 0)
5957, 58sylan9eqr 2795 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
60593impb 1116 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6160adantr 482 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6251, 61eqtrd 2773 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = 0)
6326, 62eqtrd 2773 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
64 pjoml 30420 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6513, 15, 63, 64syl12anc 836 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6665eqcomd 2739 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3910  wss 3911   class class class wbr 5106  cfv 6497  (class class class)co 7358   S csh 29912   C cch 29913  cort 29914   chj 29917  0c0h 29919   𝐶 ccm 29920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cc 10376  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134  ax-addf 11135  ax-mulf 11136  ax-hilex 29983  ax-hfvadd 29984  ax-hvcom 29985  ax-hvass 29986  ax-hv0cl 29987  ax-hvaddid 29988  ax-hfvmul 29989  ax-hvmulid 29990  ax-hvmulass 29991  ax-hvdistr1 29992  ax-hvdistr2 29993  ax-hvmul0 29994  ax-hfi 30063  ax-his1 30066  ax-his2 30067  ax-his3 30068  ax-his4 30069  ax-hcompl 30186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-omul 8418  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-fi 9352  df-sup 9383  df-inf 9384  df-oi 9451  df-card 9880  df-acn 9883  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-q 12879  df-rp 12921  df-xneg 13038  df-xadd 13039  df-xmul 13040  df-ioo 13274  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-fl 13703  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-rlim 15377  df-sum 15577  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-starv 17153  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-unif 17161  df-hom 17162  df-cco 17163  df-rest 17309  df-topn 17310  df-0g 17328  df-gsum 17329  df-topgen 17330  df-pt 17331  df-prds 17334  df-xrs 17389  df-qtop 17394  df-imas 17395  df-xps 17397  df-mre 17471  df-mrc 17472  df-acs 17474  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-mulg 18878  df-cntz 19102  df-cmn 19569  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-cn 22594  df-cnp 22595  df-lm 22596  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cfil 24635  df-cau 24636  df-cmet 24637  df-grpo 29477  df-gid 29478  df-ginv 29479  df-gdiv 29480  df-ablo 29529  df-vc 29543  df-nv 29576  df-va 29579  df-ba 29580  df-sm 29581  df-0v 29582  df-vs 29583  df-nmcv 29584  df-ims 29585  df-dip 29685  df-ssp 29706  df-ph 29797  df-cbn 29847  df-hnorm 29952  df-hba 29953  df-hvsub 29955  df-hlim 29956  df-hcau 29957  df-sh 30191  df-ch 30205  df-oc 30236  df-ch0 30237  df-shs 30292  df-chj 30294  df-cm 30567
This theorem is referenced by:  cm2j  30604  fh1i  30605  chirredlem3  31376
  Copyright terms: Public domain W3C validator