MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressress Structured version   Visualization version   GIF version

Theorem ressress 17268
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressress ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressress
StepHypRef Expression
1 simplr 768 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ 𝐴)
2 simpr1 1195 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝑊 ∈ V)
3 simpr2 1196 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4 eqid 2735 . . . . . . . . . 10 (𝑊s 𝐴) = (𝑊s 𝐴)
5 eqid 2735 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
64, 5ressval2 17256 . . . . . . . . 9 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
71, 2, 3, 6syl3anc 1373 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
8 inass 4203 . . . . . . . . . . 11 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
9 in12 4204 . . . . . . . . . . 11 (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
108, 9eqtri 2758 . . . . . . . . . 10 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
114, 5ressbas 17257 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
123, 11syl 17 . . . . . . . . . . 11 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1312ineq2d 4195 . . . . . . . . . 10 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
1410, 13eqtr2id 2783 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1514opeq2d 4856 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
167, 15oveq12d 7423 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
17 fvex 6889 . . . . . . . . 9 (Base‘𝑊) ∈ V
1817inex2 5288 . . . . . . . 8 ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V
19 setsabs 17198 . . . . . . . 8 ((𝑊 ∈ V ∧ ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
202, 18, 19sylancl 586 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
2116, 20eqtrd 2770 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
22 simpll 766 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
23 ovexd 7440 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) ∈ V)
24 simpr3 1197 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
25 eqid 2735 . . . . . . . 8 ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) ↾s 𝐵)
26 eqid 2735 . . . . . . . 8 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
2725, 26ressval2 17256 . . . . . . 7 ((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2822, 23, 24, 27syl3anc 1373 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
29 inss1 4212 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
30 sstr 3967 . . . . . . . . 9 (((Base‘𝑊) ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → (Base‘𝑊) ⊆ 𝐴)
3129, 30mpan2 691 . . . . . . . 8 ((Base‘𝑊) ⊆ (𝐴𝐵) → (Base‘𝑊) ⊆ 𝐴)
321, 31nsyl 140 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ (𝐴𝐵))
33 inex1g 5289 . . . . . . . 8 (𝐴𝑋 → (𝐴𝐵) ∈ V)
343, 33syl 17 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴𝐵) ∈ V)
35 eqid 2735 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
3635, 5ressval2 17256 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3732, 2, 34, 36syl3anc 1373 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3821, 28, 373eqtr4d 2780 . . . . 5 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
3938exp31 419 . . . 4 (¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 → (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))))
40 ovex 7438 . . . . . . . 8 (𝑊s 𝐴) ∈ V
4125, 26ressid2 17255 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
4240, 41mp3an2 1451 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
43423ad2antr3 1191 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
44 in32 4205 . . . . . . . . 9 ((𝐴𝐵) ∩ (Base‘𝑊)) = ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵)
45 simpr2 1196 . . . . . . . . . . . 12 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4645, 11syl 17 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
47 simpl 482 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
4846, 47eqsstrd 3993 . . . . . . . . . 10 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵)
49 dfss2 3944 . . . . . . . . . 10 ((𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵 ↔ ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5048, 49sylib 218 . . . . . . . . 9 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5144, 50eqtr2id 2783 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
5251oveq2d 7421 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
535ressinbas 17266 . . . . . . . 8 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
5445, 53syl 17 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
555ressinbas 17266 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5645, 33, 553syl 18 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5752, 54, 563eqtr4d 2780 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
5843, 57eqtrd 2770 . . . . 5 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5958ex 412 . . . 4 ((Base‘(𝑊s 𝐴)) ⊆ 𝐵 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
604, 5ressid2 17255 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = 𝑊)
61603adant3r3 1185 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = 𝑊)
6261oveq1d 7420 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
63 inss2 4213 . . . . . . . . . . 11 (𝐵 ∩ (Base‘𝑊)) ⊆ (Base‘𝑊)
64 simpl 482 . . . . . . . . . . 11 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘𝑊) ⊆ 𝐴)
6563, 64sstrid 3970 . . . . . . . . . 10 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴)
66 sseqin2 4198 . . . . . . . . . 10 ((𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
6765, 66sylib 218 . . . . . . . . 9 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
688, 67eqtr2id 2783 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
6968oveq2d 7421 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐵 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
70 simpr3 1197 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
715ressinbas 17266 . . . . . . . 8 (𝐵𝑌 → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
7270, 71syl 17 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
73 simpr2 1196 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
7473, 33, 553syl 18 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
7569, 72, 743eqtr4d 2780 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐴𝐵)))
7662, 75eqtrd 2770 . . . . 5 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
7776ex 412 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
7839, 59, 77pm2.61ii 183 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
79783expib 1122 . 2 (𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
80 ress0 17264 . . . 4 (∅ ↾s 𝐵) = ∅
81 reldmress 17253 . . . . . 6 Rel dom ↾s
8281ovprc1 7444 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
8382oveq1d 7420 . . . 4 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
8481ovprc1 7444 . . . 4 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
8580, 83, 843eqtr4a 2796 . . 3 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
8685a1d 25 . 2 𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
8779, 86pm2.61i 182 1 ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  wss 3926  c0 4308  cop 4607  cfv 6531  (class class class)co 7405   sSet csts 17182  ndxcnx 17212  Basecbs 17228  s cress 17251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252
This theorem is referenced by:  ressabs  17269  xrge00  33007  xrge0slmod  33363  fldexttr  33700  fldgenfldext  33709  esumpfinvallem  34105  lmhmlnmsplit  43111
  Copyright terms: Public domain W3C validator