MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressress Structured version   Visualization version   GIF version

Theorem ressress 16564
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressress ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressress
StepHypRef Expression
1 simplr 767 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ 𝐴)
2 simpr1 1190 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝑊 ∈ V)
3 simpr2 1191 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4 eqid 2823 . . . . . . . . . 10 (𝑊s 𝐴) = (𝑊s 𝐴)
5 eqid 2823 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
64, 5ressval2 16555 . . . . . . . . 9 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
71, 2, 3, 6syl3anc 1367 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
8 inass 4198 . . . . . . . . . . 11 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
9 in12 4199 . . . . . . . . . . 11 (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
108, 9eqtri 2846 . . . . . . . . . 10 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
114, 5ressbas 16556 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
123, 11syl 17 . . . . . . . . . . 11 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1312ineq2d 4191 . . . . . . . . . 10 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
1410, 13syl5req 2871 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1514opeq2d 4812 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
167, 15oveq12d 7176 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
17 fvex 6685 . . . . . . . . 9 (Base‘𝑊) ∈ V
1817inex2 5224 . . . . . . . 8 ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V
19 setsabs 16528 . . . . . . . 8 ((𝑊 ∈ V ∧ ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
202, 18, 19sylancl 588 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
2116, 20eqtrd 2858 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
22 simpll 765 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
23 ovexd 7193 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) ∈ V)
24 simpr3 1192 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
25 eqid 2823 . . . . . . . 8 ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) ↾s 𝐵)
26 eqid 2823 . . . . . . . 8 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
2725, 26ressval2 16555 . . . . . . 7 ((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2822, 23, 24, 27syl3anc 1367 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
29 inss1 4207 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
30 sstr 3977 . . . . . . . . 9 (((Base‘𝑊) ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → (Base‘𝑊) ⊆ 𝐴)
3129, 30mpan2 689 . . . . . . . 8 ((Base‘𝑊) ⊆ (𝐴𝐵) → (Base‘𝑊) ⊆ 𝐴)
321, 31nsyl 142 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ (𝐴𝐵))
33 inex1g 5225 . . . . . . . 8 (𝐴𝑋 → (𝐴𝐵) ∈ V)
343, 33syl 17 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴𝐵) ∈ V)
35 eqid 2823 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
3635, 5ressval2 16555 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3732, 2, 34, 36syl3anc 1367 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3821, 28, 373eqtr4d 2868 . . . . 5 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
3938exp31 422 . . . 4 (¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 → (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))))
40 ovex 7191 . . . . . . . 8 (𝑊s 𝐴) ∈ V
4125, 26ressid2 16554 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
4240, 41mp3an2 1445 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
43423ad2antr3 1186 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
44 in32 4200 . . . . . . . . 9 ((𝐴𝐵) ∩ (Base‘𝑊)) = ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵)
45 simpr2 1191 . . . . . . . . . . . 12 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4645, 11syl 17 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
47 simpl 485 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
4846, 47eqsstrd 4007 . . . . . . . . . 10 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵)
49 df-ss 3954 . . . . . . . . . 10 ((𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵 ↔ ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5048, 49sylib 220 . . . . . . . . 9 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5144, 50syl5req 2871 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
5251oveq2d 7174 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
535ressinbas 16562 . . . . . . . 8 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
5445, 53syl 17 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
555ressinbas 16562 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5645, 33, 553syl 18 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5752, 54, 563eqtr4d 2868 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
5843, 57eqtrd 2858 . . . . 5 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5958ex 415 . . . 4 ((Base‘(𝑊s 𝐴)) ⊆ 𝐵 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
604, 5ressid2 16554 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = 𝑊)
61603adant3r3 1180 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = 𝑊)
6261oveq1d 7173 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
63 inss2 4208 . . . . . . . . . . 11 (𝐵 ∩ (Base‘𝑊)) ⊆ (Base‘𝑊)
64 simpl 485 . . . . . . . . . . 11 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘𝑊) ⊆ 𝐴)
6563, 64sstrid 3980 . . . . . . . . . 10 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴)
66 sseqin2 4194 . . . . . . . . . 10 ((𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
6765, 66sylib 220 . . . . . . . . 9 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
688, 67syl5req 2871 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
6968oveq2d 7174 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐵 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
70 simpr3 1192 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
715ressinbas 16562 . . . . . . . 8 (𝐵𝑌 → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
7270, 71syl 17 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
73 simpr2 1191 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
7473, 33, 553syl 18 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
7569, 72, 743eqtr4d 2868 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐴𝐵)))
7662, 75eqtrd 2858 . . . . 5 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
7776ex 415 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
7839, 59, 77pm2.61ii 185 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
79783expib 1118 . 2 (𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
80 ress0 16560 . . . 4 (∅ ↾s 𝐵) = ∅
81 reldmress 16552 . . . . . 6 Rel dom ↾s
8281ovprc1 7197 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
8382oveq1d 7173 . . . 4 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
8481ovprc1 7197 . . . 4 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
8580, 83, 843eqtr4a 2884 . . 3 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
8685a1d 25 . 2 𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
8779, 86pm2.61i 184 1 ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938  c0 4293  cop 4575  cfv 6357  (class class class)co 7158  ndxcnx 16482   sSet csts 16483  Basecbs 16485  s cress 16486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-1cn 10597  ax-addcl 10599
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-nn 11641  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493
This theorem is referenced by:  ressabs  16565  xrge00  30675  xrge0slmod  30919  fldexttr  31050  esumpfinvallem  31335  lmhmlnmsplit  39694
  Copyright terms: Public domain W3C validator