MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressress Structured version   Visualization version   GIF version

Theorem ressress 16884
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressress ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressress
StepHypRef Expression
1 simplr 765 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ 𝐴)
2 simpr1 1192 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝑊 ∈ V)
3 simpr2 1193 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4 eqid 2738 . . . . . . . . . 10 (𝑊s 𝐴) = (𝑊s 𝐴)
5 eqid 2738 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
64, 5ressval2 16872 . . . . . . . . 9 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
71, 2, 3, 6syl3anc 1369 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
8 inass 4150 . . . . . . . . . . 11 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
9 in12 4151 . . . . . . . . . . 11 (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
108, 9eqtri 2766 . . . . . . . . . 10 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
114, 5ressbas 16873 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
123, 11syl 17 . . . . . . . . . . 11 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1312ineq2d 4143 . . . . . . . . . 10 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
1410, 13eqtr2id 2792 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1514opeq2d 4808 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
167, 15oveq12d 7273 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
17 fvex 6769 . . . . . . . . 9 (Base‘𝑊) ∈ V
1817inex2 5237 . . . . . . . 8 ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V
19 setsabs 16808 . . . . . . . 8 ((𝑊 ∈ V ∧ ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
202, 18, 19sylancl 585 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
2116, 20eqtrd 2778 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
22 simpll 763 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
23 ovexd 7290 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) ∈ V)
24 simpr3 1194 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
25 eqid 2738 . . . . . . . 8 ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) ↾s 𝐵)
26 eqid 2738 . . . . . . . 8 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
2725, 26ressval2 16872 . . . . . . 7 ((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2822, 23, 24, 27syl3anc 1369 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
29 inss1 4159 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
30 sstr 3925 . . . . . . . . 9 (((Base‘𝑊) ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → (Base‘𝑊) ⊆ 𝐴)
3129, 30mpan2 687 . . . . . . . 8 ((Base‘𝑊) ⊆ (𝐴𝐵) → (Base‘𝑊) ⊆ 𝐴)
321, 31nsyl 140 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ (𝐴𝐵))
33 inex1g 5238 . . . . . . . 8 (𝐴𝑋 → (𝐴𝐵) ∈ V)
343, 33syl 17 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴𝐵) ∈ V)
35 eqid 2738 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
3635, 5ressval2 16872 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3732, 2, 34, 36syl3anc 1369 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3821, 28, 373eqtr4d 2788 . . . . 5 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
3938exp31 419 . . . 4 (¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 → (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))))
40 ovex 7288 . . . . . . . 8 (𝑊s 𝐴) ∈ V
4125, 26ressid2 16871 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
4240, 41mp3an2 1447 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
43423ad2antr3 1188 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
44 in32 4152 . . . . . . . . 9 ((𝐴𝐵) ∩ (Base‘𝑊)) = ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵)
45 simpr2 1193 . . . . . . . . . . . 12 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4645, 11syl 17 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
47 simpl 482 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
4846, 47eqsstrd 3955 . . . . . . . . . 10 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵)
49 df-ss 3900 . . . . . . . . . 10 ((𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵 ↔ ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5048, 49sylib 217 . . . . . . . . 9 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5144, 50eqtr2id 2792 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
5251oveq2d 7271 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
535ressinbas 16881 . . . . . . . 8 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
5445, 53syl 17 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
555ressinbas 16881 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5645, 33, 553syl 18 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5752, 54, 563eqtr4d 2788 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
5843, 57eqtrd 2778 . . . . 5 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5958ex 412 . . . 4 ((Base‘(𝑊s 𝐴)) ⊆ 𝐵 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
604, 5ressid2 16871 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = 𝑊)
61603adant3r3 1182 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = 𝑊)
6261oveq1d 7270 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
63 inss2 4160 . . . . . . . . . . 11 (𝐵 ∩ (Base‘𝑊)) ⊆ (Base‘𝑊)
64 simpl 482 . . . . . . . . . . 11 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘𝑊) ⊆ 𝐴)
6563, 64sstrid 3928 . . . . . . . . . 10 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴)
66 sseqin2 4146 . . . . . . . . . 10 ((𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
6765, 66sylib 217 . . . . . . . . 9 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
688, 67eqtr2id 2792 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
6968oveq2d 7271 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐵 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
70 simpr3 1194 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
715ressinbas 16881 . . . . . . . 8 (𝐵𝑌 → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
7270, 71syl 17 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
73 simpr2 1193 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
7473, 33, 553syl 18 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
7569, 72, 743eqtr4d 2788 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐴𝐵)))
7662, 75eqtrd 2778 . . . . 5 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
7776ex 412 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
7839, 59, 77pm2.61ii 183 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
79783expib 1120 . 2 (𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
80 ress0 16879 . . . 4 (∅ ↾s 𝐵) = ∅
81 reldmress 16869 . . . . . 6 Rel dom ↾s
8281ovprc1 7294 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
8382oveq1d 7270 . . . 4 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
8481ovprc1 7294 . . . 4 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
8580, 83, 843eqtr4a 2805 . . 3 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
8685a1d 25 . 2 𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
8779, 86pm2.61i 182 1 ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  c0 4253  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Basecbs 16840  s cress 16867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868
This theorem is referenced by:  ressabs  16885  xrge00  31197  xrge0slmod  31450  fldexttr  31635  esumpfinvallem  31942  lmhmlnmsplit  40828
  Copyright terms: Public domain W3C validator