MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressress Structured version   Visualization version   GIF version

Theorem ressress 17158
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressress ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressress
StepHypRef Expression
1 simplr 768 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ 𝐴)
2 simpr1 1195 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝑊 ∈ V)
3 simpr2 1196 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4 eqid 2729 . . . . . . . . . 10 (𝑊s 𝐴) = (𝑊s 𝐴)
5 eqid 2729 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
64, 5ressval2 17146 . . . . . . . . 9 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
71, 2, 3, 6syl3anc 1373 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
8 inass 4179 . . . . . . . . . . 11 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
9 in12 4180 . . . . . . . . . . 11 (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
108, 9eqtri 2752 . . . . . . . . . 10 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
114, 5ressbas 17147 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
123, 11syl 17 . . . . . . . . . . 11 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1312ineq2d 4171 . . . . . . . . . 10 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
1410, 13eqtr2id 2777 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1514opeq2d 4831 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
167, 15oveq12d 7367 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
17 fvex 6835 . . . . . . . . 9 (Base‘𝑊) ∈ V
1817inex2 5257 . . . . . . . 8 ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V
19 setsabs 17090 . . . . . . . 8 ((𝑊 ∈ V ∧ ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
202, 18, 19sylancl 586 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
2116, 20eqtrd 2764 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
22 simpll 766 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
23 ovexd 7384 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) ∈ V)
24 simpr3 1197 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
25 eqid 2729 . . . . . . . 8 ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) ↾s 𝐵)
26 eqid 2729 . . . . . . . 8 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
2725, 26ressval2 17146 . . . . . . 7 ((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2822, 23, 24, 27syl3anc 1373 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
29 inss1 4188 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
30 sstr 3944 . . . . . . . . 9 (((Base‘𝑊) ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → (Base‘𝑊) ⊆ 𝐴)
3129, 30mpan2 691 . . . . . . . 8 ((Base‘𝑊) ⊆ (𝐴𝐵) → (Base‘𝑊) ⊆ 𝐴)
321, 31nsyl 140 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ (𝐴𝐵))
33 inex1g 5258 . . . . . . . 8 (𝐴𝑋 → (𝐴𝐵) ∈ V)
343, 33syl 17 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴𝐵) ∈ V)
35 eqid 2729 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
3635, 5ressval2 17146 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3732, 2, 34, 36syl3anc 1373 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3821, 28, 373eqtr4d 2774 . . . . 5 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
3938exp31 419 . . . 4 (¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 → (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))))
40 ovex 7382 . . . . . . . 8 (𝑊s 𝐴) ∈ V
4125, 26ressid2 17145 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
4240, 41mp3an2 1451 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
43423ad2antr3 1191 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
44 in32 4181 . . . . . . . . 9 ((𝐴𝐵) ∩ (Base‘𝑊)) = ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵)
45 simpr2 1196 . . . . . . . . . . . 12 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4645, 11syl 17 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
47 simpl 482 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
4846, 47eqsstrd 3970 . . . . . . . . . 10 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵)
49 dfss2 3921 . . . . . . . . . 10 ((𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵 ↔ ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5048, 49sylib 218 . . . . . . . . 9 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5144, 50eqtr2id 2777 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
5251oveq2d 7365 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
535ressinbas 17156 . . . . . . . 8 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
5445, 53syl 17 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
555ressinbas 17156 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5645, 33, 553syl 18 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5752, 54, 563eqtr4d 2774 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
5843, 57eqtrd 2764 . . . . 5 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5958ex 412 . . . 4 ((Base‘(𝑊s 𝐴)) ⊆ 𝐵 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
604, 5ressid2 17145 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = 𝑊)
61603adant3r3 1185 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = 𝑊)
6261oveq1d 7364 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
63 inss2 4189 . . . . . . . . . . 11 (𝐵 ∩ (Base‘𝑊)) ⊆ (Base‘𝑊)
64 simpl 482 . . . . . . . . . . 11 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘𝑊) ⊆ 𝐴)
6563, 64sstrid 3947 . . . . . . . . . 10 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴)
66 sseqin2 4174 . . . . . . . . . 10 ((𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
6765, 66sylib 218 . . . . . . . . 9 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
688, 67eqtr2id 2777 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
6968oveq2d 7365 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐵 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
70 simpr3 1197 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
715ressinbas 17156 . . . . . . . 8 (𝐵𝑌 → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
7270, 71syl 17 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
73 simpr2 1196 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
7473, 33, 553syl 18 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
7569, 72, 743eqtr4d 2774 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐴𝐵)))
7662, 75eqtrd 2764 . . . . 5 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
7776ex 412 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
7839, 59, 77pm2.61ii 183 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
79783expib 1122 . 2 (𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
80 ress0 17154 . . . 4 (∅ ↾s 𝐵) = ∅
81 reldmress 17143 . . . . . 6 Rel dom ↾s
8281ovprc1 7388 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
8382oveq1d 7364 . . . 4 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
8481ovprc1 7388 . . . 4 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
8580, 83, 843eqtr4a 2790 . . 3 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
8685a1d 25 . 2 𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
8779, 86pm2.61i 182 1 ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903  c0 4284  cop 4583  cfv 6482  (class class class)co 7349   sSet csts 17074  ndxcnx 17104  Basecbs 17120  s cress 17141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142
This theorem is referenced by:  ressabs  17159  xrge00  32969  xrge0slmod  33286  fldexttr  33631  fldgenfldext  33641  esumpfinvallem  34047  lmhmlnmsplit  43070
  Copyright terms: Public domain W3C validator