Proof of Theorem kmlem12
Step | Hyp | Ref
| Expression |
1 | | difeq1 4030 |
. . . . . . 7
⊢ (𝑡 = 𝑧 → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑡}))) |
2 | | sneq 4551 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑧 → {𝑡} = {𝑧}) |
3 | 2 | difeq2d 4037 |
. . . . . . . . 9
⊢ (𝑡 = 𝑧 → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧})) |
4 | 3 | unieqd 4833 |
. . . . . . . 8
⊢ (𝑡 = 𝑧 → ∪ (𝑥 ∖ {𝑡}) = ∪ (𝑥 ∖ {𝑧})) |
5 | 4 | difeq2d 4037 |
. . . . . . 7
⊢ (𝑡 = 𝑧 → (𝑧 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
6 | 1, 5 | eqtrd 2777 |
. . . . . 6
⊢ (𝑡 = 𝑧 → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
7 | 6 | neeq1d 3000 |
. . . . 5
⊢ (𝑡 = 𝑧 → ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ ↔ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅)) |
8 | 7 | cbvralvw 3358 |
. . . 4
⊢
(∀𝑡 ∈
𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ ↔ ∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅) |
9 | 6 | ineq1d 4126 |
. . . . . . 7
⊢ (𝑡 = 𝑧 → ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) = ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) |
10 | 9 | eleq2d 2823 |
. . . . . 6
⊢ (𝑡 = 𝑧 → (𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦))) |
11 | 10 | eubidv 2585 |
. . . . 5
⊢ (𝑡 = 𝑧 → (∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦))) |
12 | 11 | cbvralvw 3358 |
. . . 4
⊢
(∀𝑡 ∈
𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) |
13 | 8, 12 | imbi12i 354 |
. . 3
⊢
((∀𝑡 ∈
𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) ↔ (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦))) |
14 | | in12 4135 |
. . . . . . . . . 10
⊢ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)) = (𝑦 ∩ (𝑧 ∩ ∪ 𝐴)) |
15 | | incom 4115 |
. . . . . . . . . 10
⊢ (𝑦 ∩ (𝑧 ∩ ∪ 𝐴)) = ((𝑧 ∩ ∪ 𝐴) ∩ 𝑦) |
16 | 14, 15 | eqtri 2765 |
. . . . . . . . 9
⊢ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)) = ((𝑧 ∩ ∪ 𝐴) ∩ 𝑦) |
17 | | kmlem9.1 |
. . . . . . . . . . 11
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} |
18 | 17 | kmlem11 9774 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ ∪ 𝐴) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
19 | 18 | ineq1d 4126 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ∩ ∪ 𝐴) ∩ 𝑦) = ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) |
20 | 16, 19 | eqtr2id 2791 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) = (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))) |
21 | 20 | eleq2d 2823 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑥 → (𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) |
22 | 21 | eubidv 2585 |
. . . . . 6
⊢ (𝑧 ∈ 𝑥 → (∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) |
23 | | ax-1 6 |
. . . . . 6
⊢
(∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) |
24 | 22, 23 | syl6bi 256 |
. . . . 5
⊢ (𝑧 ∈ 𝑥 → (∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) |
25 | 24 | ralimia 3081 |
. . . 4
⊢
(∀𝑧 ∈
𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) |
26 | 25 | imim2i 16 |
. . 3
⊢
((∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) → (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) |
27 | 13, 26 | sylbi 220 |
. 2
⊢
((∀𝑡 ∈
𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) → (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) |
28 | 17 | raleqi 3323 |
. . . 4
⊢
(∀𝑧 ∈
𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
29 | | df-ral 3066 |
. . . 4
⊢
(∀𝑧 ∈
{𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) |
30 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
31 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → (𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
32 | 31 | rexbidv 3216 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → (∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ ∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
33 | 30, 32 | elab 3587 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ↔ ∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) |
34 | 33 | imbi1i 353 |
. . . . . . 7
⊢ ((𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) |
35 | | r19.23v 3198 |
. . . . . . 7
⊢
(∀𝑡 ∈
𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) |
36 | 34, 35 | bitr4i 281 |
. . . . . 6
⊢ ((𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑡 ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) |
37 | 36 | albii 1827 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑧∀𝑡 ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) |
38 | | ralcom4 3157 |
. . . . 5
⊢
(∀𝑡 ∈
𝑥 ∀𝑧(𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑧∀𝑡 ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) |
39 | | vex 3412 |
. . . . . . . 8
⊢ 𝑡 ∈ V |
40 | 39 | difexi 5221 |
. . . . . . 7
⊢ (𝑡 ∖ ∪ (𝑥
∖ {𝑡})) ∈
V |
41 | | neeq1 3003 |
. . . . . . . 8
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ ↔ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅)) |
42 | | ineq1 4120 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ∩ 𝑦) = ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) |
43 | 42 | eleq2d 2823 |
. . . . . . . . 9
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
44 | 43 | eubidv 2585 |
. . . . . . . 8
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
45 | 41, 44 | imbi12d 348 |
. . . . . . 7
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → ((𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)))) |
46 | 40, 45 | ceqsalv 3443 |
. . . . . 6
⊢
(∀𝑧(𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
47 | 46 | ralbii 3088 |
. . . . 5
⊢
(∀𝑡 ∈
𝑥 ∀𝑧(𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑡 ∈ 𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
48 | 37, 38, 47 | 3bitr2i 302 |
. . . 4
⊢
(∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑡 ∈ 𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
49 | 28, 29, 48 | 3bitri 300 |
. . 3
⊢
(∀𝑧 ∈
𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑡 ∈ 𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
50 | | ralim 3085 |
. . 3
⊢
(∀𝑡 ∈
𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) → (∀𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
51 | 49, 50 | sylbi 220 |
. 2
⊢
(∀𝑧 ∈
𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → (∀𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) |
52 | 27, 51 | syl11 33 |
1
⊢
(∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) |