Proof of Theorem kmlem12
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | difeq1 4118 | . . . . . . 7
⊢ (𝑡 = 𝑧 → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑡}))) | 
| 2 |  | sneq 4635 | . . . . . . . . . 10
⊢ (𝑡 = 𝑧 → {𝑡} = {𝑧}) | 
| 3 | 2 | difeq2d 4125 | . . . . . . . . 9
⊢ (𝑡 = 𝑧 → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧})) | 
| 4 | 3 | unieqd 4919 | . . . . . . . 8
⊢ (𝑡 = 𝑧 → ∪ (𝑥 ∖ {𝑡}) = ∪ (𝑥 ∖ {𝑧})) | 
| 5 | 4 | difeq2d 4125 | . . . . . . 7
⊢ (𝑡 = 𝑧 → (𝑧 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) | 
| 6 | 1, 5 | eqtrd 2776 | . . . . . 6
⊢ (𝑡 = 𝑧 → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) | 
| 7 | 6 | neeq1d 2999 | . . . . 5
⊢ (𝑡 = 𝑧 → ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ ↔ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅)) | 
| 8 | 7 | cbvralvw 3236 | . . . 4
⊢
(∀𝑡 ∈
𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ ↔ ∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅) | 
| 9 | 6 | ineq1d 4218 | . . . . . . 7
⊢ (𝑡 = 𝑧 → ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) = ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) | 
| 10 | 9 | eleq2d 2826 | . . . . . 6
⊢ (𝑡 = 𝑧 → (𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦))) | 
| 11 | 10 | eubidv 2585 | . . . . 5
⊢ (𝑡 = 𝑧 → (∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦))) | 
| 12 | 11 | cbvralvw 3236 | . . . 4
⊢
(∀𝑡 ∈
𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) | 
| 13 | 8, 12 | imbi12i 350 | . . 3
⊢
((∀𝑡 ∈
𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) ↔ (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦))) | 
| 14 |  | in12 4228 | . . . . . . . . . 10
⊢ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)) = (𝑦 ∩ (𝑧 ∩ ∪ 𝐴)) | 
| 15 |  | incom 4208 | . . . . . . . . . 10
⊢ (𝑦 ∩ (𝑧 ∩ ∪ 𝐴)) = ((𝑧 ∩ ∪ 𝐴) ∩ 𝑦) | 
| 16 | 14, 15 | eqtri 2764 | . . . . . . . . 9
⊢ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)) = ((𝑧 ∩ ∪ 𝐴) ∩ 𝑦) | 
| 17 |  | kmlem9.1 | . . . . . . . . . . 11
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} | 
| 18 | 17 | kmlem11 10202 | . . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ ∪ 𝐴) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) | 
| 19 | 18 | ineq1d 4218 | . . . . . . . . 9
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ∩ ∪ 𝐴) ∩ 𝑦) = ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) | 
| 20 | 16, 19 | eqtr2id 2789 | . . . . . . . 8
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) = (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))) | 
| 21 | 20 | eleq2d 2826 | . . . . . . 7
⊢ (𝑧 ∈ 𝑥 → (𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) | 
| 22 | 21 | eubidv 2585 | . . . . . 6
⊢ (𝑧 ∈ 𝑥 → (∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) | 
| 23 |  | ax-1 6 | . . . . . 6
⊢
(∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) | 
| 24 | 22, 23 | biimtrdi 253 | . . . . 5
⊢ (𝑧 ∈ 𝑥 → (∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) | 
| 25 | 24 | ralimia 3079 | . . . 4
⊢
(∀𝑧 ∈
𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴)))) | 
| 26 | 25 | imim2i 16 | . . 3
⊢
((∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑦)) → (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) | 
| 27 | 13, 26 | sylbi 217 | . 2
⊢
((∀𝑡 ∈
𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) → (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) | 
| 28 | 17 | raleqi 3323 | . . . 4
⊢
(∀𝑧 ∈
𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | 
| 29 |  | df-ral 3061 | . . . 4
⊢
(∀𝑧 ∈
{𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 30 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑧 ∈ V | 
| 31 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑢 = 𝑧 → (𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) | 
| 32 | 31 | rexbidv 3178 | . . . . . . . . 9
⊢ (𝑢 = 𝑧 → (∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ ∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) | 
| 33 | 30, 32 | elab 3678 | . . . . . . . 8
⊢ (𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ↔ ∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) | 
| 34 | 33 | imbi1i 349 | . . . . . . 7
⊢ ((𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 35 |  | r19.23v 3182 | . . . . . . 7
⊢
(∀𝑡 ∈
𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 36 | 34, 35 | bitr4i 278 | . . . . . 6
⊢ ((𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑡 ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 37 | 36 | albii 1818 | . . . . 5
⊢
(∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑧∀𝑡 ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 38 |  | ralcom4 3285 | . . . . 5
⊢
(∀𝑡 ∈
𝑥 ∀𝑧(𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑧∀𝑡 ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 39 |  | vex 3483 | . . . . . . . 8
⊢ 𝑡 ∈ V | 
| 40 | 39 | difexi 5329 | . . . . . . 7
⊢ (𝑡 ∖ ∪ (𝑥
∖ {𝑡})) ∈
V | 
| 41 |  | neeq1 3002 | . . . . . . . 8
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ ↔ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅)) | 
| 42 |  | ineq1 4212 | . . . . . . . . . 10
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ∩ 𝑦) = ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) | 
| 43 | 42 | eleq2d 2826 | . . . . . . . . 9
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 44 | 43 | eubidv 2585 | . . . . . . . 8
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 45 | 41, 44 | imbi12d 344 | . . . . . . 7
⊢ (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → ((𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)))) | 
| 46 | 40, 45 | ceqsalv 3520 | . . . . . 6
⊢
(∀𝑧(𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 47 | 46 | ralbii 3092 | . . . . 5
⊢
(∀𝑡 ∈
𝑥 ∀𝑧(𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑡 ∈ 𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 48 | 37, 38, 47 | 3bitr2i 299 | . . . 4
⊢
(∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀𝑡 ∈ 𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 49 | 28, 29, 48 | 3bitri 297 | . . 3
⊢
(∀𝑧 ∈
𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑡 ∈ 𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 50 |  | ralim 3085 | . . 3
⊢
(∀𝑡 ∈
𝑥 ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦)) → (∀𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 51 | 49, 50 | sylbi 217 | . 2
⊢
(∀𝑧 ∈
𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → (∀𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡 ∈ 𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑦))) | 
| 52 | 27, 51 | syl11 33 | 1
⊢
(∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) |