![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdmres | Structured version Visualization version GIF version |
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
resdmres | ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 4079 | . . . 4 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) | |
2 | df-res 5412 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V)) | |
3 | resdm2 5921 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | |
4 | 2, 3 | eqtr3i 2798 | . . . . 5 ⊢ (𝐴 ∩ (dom 𝐴 × V)) = ◡◡𝐴 |
5 | 4 | ineq2i 4068 | . . . 4 ⊢ ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ ◡◡𝐴) |
6 | incom 4062 | . . . 4 ⊢ ((𝐵 × V) ∩ ◡◡𝐴) = (◡◡𝐴 ∩ (𝐵 × V)) | |
7 | 1, 5, 6 | 3eqtri 2800 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (◡◡𝐴 ∩ (𝐵 × V)) |
8 | df-res 5412 | . . . 4 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) | |
9 | dmres 5714 | . . . . . . 7 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
10 | 9 | xpeq1i 5426 | . . . . . 6 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V) |
11 | xpindir 5548 | . . . . . 6 ⊢ ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) | |
12 | 10, 11 | eqtri 2796 | . . . . 5 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) |
13 | 12 | ineq2i 4068 | . . . 4 ⊢ (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
14 | 8, 13 | eqtri 2796 | . . 3 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
15 | df-res 5412 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (◡◡𝐴 ∩ (𝐵 × V)) | |
16 | 7, 14, 15 | 3eqtr4i 2806 | . 2 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (◡◡𝐴 ↾ 𝐵) |
17 | rescnvcnv 5894 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
18 | 16, 17 | eqtri 2796 | 1 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 Vcvv 3409 ∩ cin 3824 × cxp 5398 ◡ccnv 5399 dom cdm 5400 ↾ cres 5402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-xp 5406 df-rel 5407 df-cnv 5408 df-dm 5410 df-rn 5411 df-res 5412 |
This theorem is referenced by: resresdm 5923 imadmres 5924 lindfres 20659 imacmp 21699 metreslem 22665 volres 23822 eccnvepres3 34934 |
Copyright terms: Public domain | W3C validator |