MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmres Structured version   Visualization version   GIF version

Theorem resdmres 6208
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem resdmres
StepHypRef Expression
1 in12 4195 . . . 4 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V)))
2 df-res 5653 . . . . . 6 (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V))
3 resdm2 6207 . . . . . 6 (𝐴 ↾ dom 𝐴) = 𝐴
42, 3eqtr3i 2755 . . . . 5 (𝐴 ∩ (dom 𝐴 × V)) = 𝐴
54ineq2i 4183 . . . 4 ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ 𝐴)
6 incom 4175 . . . 4 ((𝐵 × V) ∩ 𝐴) = (𝐴 ∩ (𝐵 × V))
71, 5, 63eqtri 2757 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (𝐴 ∩ (𝐵 × V))
8 df-res 5653 . . . 4 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ (dom (𝐴𝐵) × V))
9 dmres 5986 . . . . . . 7 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
109xpeq1i 5667 . . . . . 6 (dom (𝐴𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V)
11 xpindir 5801 . . . . . 6 ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1210, 11eqtri 2753 . . . . 5 (dom (𝐴𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1312ineq2i 4183 . . . 4 (𝐴 ∩ (dom (𝐴𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
148, 13eqtri 2753 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
15 df-res 5653 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
167, 14, 153eqtr4i 2763 . 2 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
17 rescnvcnv 6180 . 2 (𝐴𝐵) = (𝐴𝐵)
1816, 17eqtri 2753 1 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cin 3916   × cxp 5639  ccnv 5640  dom cdm 5641  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  resresdm  6209  imadmres  6210  lindfres  21739  imacmp  23291  metreslem  24257  volres  25436  eccnvepres3  38281  isubgruhgr  47872
  Copyright terms: Public domain W3C validator