MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmres Structured version   Visualization version   GIF version

Theorem resdmres 6095
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem resdmres
StepHypRef Expression
1 in12 4135 . . . 4 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V)))
2 df-res 5563 . . . . . 6 (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V))
3 resdm2 6094 . . . . . 6 (𝐴 ↾ dom 𝐴) = 𝐴
42, 3eqtr3i 2767 . . . . 5 (𝐴 ∩ (dom 𝐴 × V)) = 𝐴
54ineq2i 4124 . . . 4 ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ 𝐴)
6 incom 4115 . . . 4 ((𝐵 × V) ∩ 𝐴) = (𝐴 ∩ (𝐵 × V))
71, 5, 63eqtri 2769 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (𝐴 ∩ (𝐵 × V))
8 df-res 5563 . . . 4 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ (dom (𝐴𝐵) × V))
9 dmres 5873 . . . . . . 7 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
109xpeq1i 5577 . . . . . 6 (dom (𝐴𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V)
11 xpindir 5703 . . . . . 6 ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1210, 11eqtri 2765 . . . . 5 (dom (𝐴𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1312ineq2i 4124 . . . 4 (𝐴 ∩ (dom (𝐴𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
148, 13eqtri 2765 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
15 df-res 5563 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
167, 14, 153eqtr4i 2775 . 2 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
17 rescnvcnv 6067 . 2 (𝐴𝐵) = (𝐴𝐵)
1816, 17eqtri 2765 1 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  Vcvv 3408  cin 3865   × cxp 5549  ccnv 5550  dom cdm 5551  cres 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563
This theorem is referenced by:  resresdm  6096  imadmres  6097  lindfres  20785  imacmp  22294  metreslem  23260  volres  24425  eccnvepres3  36157
  Copyright terms: Public domain W3C validator