| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdmres | Structured version Visualization version GIF version | ||
| Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| resdmres | ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in12 4209 | . . . 4 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) | |
| 2 | df-res 5671 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V)) | |
| 3 | resdm2 6225 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | |
| 4 | 2, 3 | eqtr3i 2761 | . . . . 5 ⊢ (𝐴 ∩ (dom 𝐴 × V)) = ◡◡𝐴 |
| 5 | 4 | ineq2i 4197 | . . . 4 ⊢ ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ ◡◡𝐴) |
| 6 | incom 4189 | . . . 4 ⊢ ((𝐵 × V) ∩ ◡◡𝐴) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 7 | 1, 5, 6 | 3eqtri 2763 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (◡◡𝐴 ∩ (𝐵 × V)) |
| 8 | df-res 5671 | . . . 4 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) | |
| 9 | dmres 6004 | . . . . . . 7 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 10 | 9 | xpeq1i 5685 | . . . . . 6 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V) |
| 11 | xpindir 5819 | . . . . . 6 ⊢ ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) | |
| 12 | 10, 11 | eqtri 2759 | . . . . 5 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) |
| 13 | 12 | ineq2i 4197 | . . . 4 ⊢ (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 14 | 8, 13 | eqtri 2759 | . . 3 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 15 | df-res 5671 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 16 | 7, 14, 15 | 3eqtr4i 2769 | . 2 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (◡◡𝐴 ↾ 𝐵) |
| 17 | rescnvcnv 6198 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 18 | 16, 17 | eqtri 2759 | 1 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∩ cin 3930 × cxp 5657 ◡ccnv 5658 dom cdm 5659 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 |
| This theorem is referenced by: resresdm 6227 imadmres 6228 lindfres 21788 imacmp 23340 metreslem 24306 volres 25486 eccnvepres3 38309 isubgruhgr 47848 |
| Copyright terms: Public domain | W3C validator |