MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmres Structured version   Visualization version   GIF version

Theorem resdmres 6089
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdmres (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem resdmres
StepHypRef Expression
1 in12 4197 . . . 4 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V)))
2 df-res 5567 . . . . . 6 (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V))
3 resdm2 6088 . . . . . 6 (𝐴 ↾ dom 𝐴) = 𝐴
42, 3eqtr3i 2846 . . . . 5 (𝐴 ∩ (dom 𝐴 × V)) = 𝐴
54ineq2i 4186 . . . 4 ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ 𝐴)
6 incom 4178 . . . 4 ((𝐵 × V) ∩ 𝐴) = (𝐴 ∩ (𝐵 × V))
71, 5, 63eqtri 2848 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (𝐴 ∩ (𝐵 × V))
8 df-res 5567 . . . 4 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ (dom (𝐴𝐵) × V))
9 dmres 5875 . . . . . . 7 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
109xpeq1i 5581 . . . . . 6 (dom (𝐴𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V)
11 xpindir 5705 . . . . . 6 ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1210, 11eqtri 2844 . . . . 5 (dom (𝐴𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V))
1312ineq2i 4186 . . . 4 (𝐴 ∩ (dom (𝐴𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
148, 13eqtri 2844 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V)))
15 df-res 5567 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
167, 14, 153eqtr4i 2854 . 2 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
17 rescnvcnv 6061 . 2 (𝐴𝐵) = (𝐴𝐵)
1816, 17eqtri 2844 1 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3494  cin 3935   × cxp 5553  ccnv 5554  dom cdm 5555  cres 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567
This theorem is referenced by:  resresdm  6090  imadmres  6091  lindfres  20967  imacmp  22005  metreslem  22972  volres  24129  eccnvepres3  35557
  Copyright terms: Public domain W3C validator