| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdmres | Structured version Visualization version GIF version | ||
| Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| resdmres | ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in12 4188 | . . . 4 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) | |
| 2 | df-res 5643 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = (𝐴 ∩ (dom 𝐴 × V)) | |
| 3 | resdm2 6192 | . . . . . 6 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | |
| 4 | 2, 3 | eqtr3i 2754 | . . . . 5 ⊢ (𝐴 ∩ (dom 𝐴 × V)) = ◡◡𝐴 |
| 5 | 4 | ineq2i 4176 | . . . 4 ⊢ ((𝐵 × V) ∩ (𝐴 ∩ (dom 𝐴 × V))) = ((𝐵 × V) ∩ ◡◡𝐴) |
| 6 | incom 4168 | . . . 4 ⊢ ((𝐵 × V) ∩ ◡◡𝐴) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 7 | 1, 5, 6 | 3eqtri 2756 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) = (◡◡𝐴 ∩ (𝐵 × V)) |
| 8 | df-res 5643 | . . . 4 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) | |
| 9 | dmres 5972 | . . . . . . 7 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 10 | 9 | xpeq1i 5657 | . . . . . 6 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 ∩ dom 𝐴) × V) |
| 11 | xpindir 5788 | . . . . . 6 ⊢ ((𝐵 ∩ dom 𝐴) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) | |
| 12 | 10, 11 | eqtri 2752 | . . . . 5 ⊢ (dom (𝐴 ↾ 𝐵) × V) = ((𝐵 × V) ∩ (dom 𝐴 × V)) |
| 13 | 12 | ineq2i 4176 | . . . 4 ⊢ (𝐴 ∩ (dom (𝐴 ↾ 𝐵) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 14 | 8, 13 | eqtri 2752 | . . 3 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ∩ ((𝐵 × V) ∩ (dom 𝐴 × V))) |
| 15 | df-res 5643 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (◡◡𝐴 ∩ (𝐵 × V)) | |
| 16 | 7, 14, 15 | 3eqtr4i 2762 | . 2 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (◡◡𝐴 ↾ 𝐵) |
| 17 | rescnvcnv 6165 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 18 | 16, 17 | eqtri 2752 | 1 ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∩ cin 3910 × cxp 5629 ◡ccnv 5630 dom cdm 5631 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 |
| This theorem is referenced by: resresdm 6194 imadmres 6195 lindfres 21708 imacmp 23260 metreslem 24226 volres 25405 eccnvepres3 38247 isubgruhgr 47841 |
| Copyright terms: Public domain | W3C validator |