Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inf00 | Structured version Visualization version GIF version |
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9132 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
2 | sup00 9153 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 ◡ccnv 5579 supcsup 9129 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-uni 4837 df-sup 9131 df-inf 9132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |