MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf00 Structured version   Visualization version   GIF version

Theorem inf00 9465
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
inf00 inf(𝐵, ∅, 𝑅) = ∅

Proof of Theorem inf00
StepHypRef Expression
1 df-inf 9400 . 2 inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, 𝑅)
2 sup00 9422 . 2 sup(𝐵, ∅, 𝑅) = ∅
31, 2eqtri 2753 1 inf(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4298  ccnv 5639  supcsup 9397  infcinf 9398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-ss 3933  df-nul 4299  df-sn 4592  df-uni 4874  df-sup 9399  df-inf 9400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator