| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf00 | Structured version Visualization version GIF version | ||
| Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9327 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
| 2 | sup00 9349 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
| 3 | 1, 2 | eqtri 2754 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4280 ◡ccnv 5613 supcsup 9324 infcinf 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-uni 4857 df-sup 9326 df-inf 9327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |