![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf00 | Structured version Visualization version GIF version |
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9444 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
2 | sup00 9465 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
3 | 1, 2 | eqtri 2759 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∅c0 4322 ◡ccnv 5675 supcsup 9441 infcinf 9442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-uni 4909 df-sup 9443 df-inf 9444 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |