MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf00 Structured version   Visualization version   GIF version

Theorem inf00 9537
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
inf00 inf(𝐵, ∅, 𝑅) = ∅

Proof of Theorem inf00
StepHypRef Expression
1 df-inf 9474 . 2 inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, 𝑅)
2 sup00 9495 . 2 sup(𝐵, ∅, 𝑅) = ∅
31, 2eqtri 2756 1 inf(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  c0 4326  ccnv 5681  supcsup 9471  infcinf 9472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-in 3956  df-ss 3966  df-nul 4327  df-sn 4633  df-uni 4913  df-sup 9473  df-inf 9474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator