| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf00 | Structured version Visualization version GIF version | ||
| Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9465 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
| 2 | sup00 9486 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
| 3 | 1, 2 | eqtri 2757 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∅c0 4313 ◡ccnv 5664 supcsup 9462 infcinf 9463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-ss 3948 df-nul 4314 df-sn 4607 df-uni 4888 df-sup 9464 df-inf 9465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |