| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf00 | Structured version Visualization version GIF version | ||
| Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9400 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
| 2 | sup00 9422 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
| 3 | 1, 2 | eqtri 2753 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4298 ◡ccnv 5639 supcsup 9397 infcinf 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 df-sn 4592 df-uni 4874 df-sup 9399 df-inf 9400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |