Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inf00 | Structured version Visualization version GIF version |
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 8980 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
2 | sup00 9001 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
3 | 1, 2 | eqtri 2761 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∅c0 4211 ◡ccnv 5524 supcsup 8977 infcinf 8978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-in 3850 df-ss 3860 df-nul 4212 df-sn 4517 df-uni 4797 df-sup 8979 df-inf 8980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |