MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf00 Structured version   Visualization version   GIF version

Theorem inf00 9577
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
inf00 inf(𝐵, ∅, 𝑅) = ∅

Proof of Theorem inf00
StepHypRef Expression
1 df-inf 9514 . 2 inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, 𝑅)
2 sup00 9535 . 2 sup(𝐵, ∅, 𝑅) = ∅
31, 2eqtri 2768 1 inf(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  c0 4352  ccnv 5699  supcsup 9511  infcinf 9512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649  df-uni 4932  df-sup 9513  df-inf 9514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator