![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf00 | Structured version Visualization version GIF version |
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
inf00 | ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9490 | . 2 ⊢ inf(𝐵, ∅, 𝑅) = sup(𝐵, ∅, ◡𝑅) | |
2 | sup00 9511 | . 2 ⊢ sup(𝐵, ∅, ◡𝑅) = ∅ | |
3 | 1, 2 | eqtri 2765 | 1 ⊢ inf(𝐵, ∅, 𝑅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4342 ◡ccnv 5692 supcsup 9487 infcinf 9488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-ss 3983 df-nul 4343 df-sn 4635 df-uni 4916 df-sup 9489 df-inf 9490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |