![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infsn | Structured version Visualization version GIF version |
Description: The infimum of a singleton. (Contributed by NM, 2-Oct-2007.) |
Ref | Expression |
---|---|
infsn | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4644 | . . . 4 ⊢ {𝐵} = {𝐵, 𝐵} | |
2 | 1 | infeq1i 9516 | . . 3 ⊢ inf({𝐵}, 𝐴, 𝑅) = inf({𝐵, 𝐵}, 𝐴, 𝑅) |
3 | infpr 9541 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) | |
4 | 3 | 3anidm23 1420 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
5 | 2, 4 | eqtrid 2787 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
6 | ifid 4571 | . 2 ⊢ if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵 | |
7 | 5, 6 | eqtrdi 2791 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 {csn 4631 {cpr 4633 class class class wbr 5148 Or wor 5596 infcinf 9479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-po 5597 df-so 5598 df-cnv 5697 df-iota 6516 df-riota 7388 df-sup 9480 df-inf 9481 |
This theorem is referenced by: infxrpnf 45396 limsup0 45650 limsuppnfdlem 45657 limsup10ex 45729 |
Copyright terms: Public domain | W3C validator |