MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infsn Structured version   Visualization version   GIF version

Theorem infsn 9502
Description: The infimum of a singleton. (Contributed by NM, 2-Oct-2007.)
Assertion
Ref Expression
infsn ((𝑅 Or 𝐴𝐵𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵)

Proof of Theorem infsn
StepHypRef Expression
1 dfsn2 4641 . . . 4 {𝐵} = {𝐵, 𝐵}
21infeq1i 9475 . . 3 inf({𝐵}, 𝐴, 𝑅) = inf({𝐵, 𝐵}, 𝐴, 𝑅)
3 infpr 9500 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐵𝐴) → inf({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
433anidm23 1421 . . 3 ((𝑅 Or 𝐴𝐵𝐴) → inf({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
52, 4eqtrid 2784 . 2 ((𝑅 Or 𝐴𝐵𝐴) → inf({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
6 ifid 4568 . 2 if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵
75, 6eqtrdi 2788 1 ((𝑅 Or 𝐴𝐵𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4528  {csn 4628  {cpr 4630   class class class wbr 5148   Or wor 5587  infcinf 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-po 5588  df-so 5589  df-cnv 5684  df-iota 6495  df-riota 7367  df-sup 9439  df-inf 9440
This theorem is referenced by:  infxrpnf  44455  limsup0  44709  limsuppnfdlem  44716  limsup10ex  44788
  Copyright terms: Public domain W3C validator