![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sup00 | Structured version Visualization version GIF version |
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
sup00 | ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 9465 | . 2 ⊢ sup(𝐵, ∅, 𝑅) = ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
2 | rab0 4383 | . . 3 ⊢ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∅ | |
3 | 2 | unieqi 4920 | . 2 ⊢ ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∪ ∅ |
4 | uni0 4938 | . 2 ⊢ ∪ ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2760 | 1 ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∀wral 3058 ∃wrex 3067 {crab 3429 ∅c0 4323 ∪ cuni 4908 class class class wbr 5148 supcsup 9463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4324 df-sn 4630 df-uni 4909 df-sup 9465 |
This theorem is referenced by: inf00 9529 |
Copyright terms: Public domain | W3C validator |