| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sup00 | Structured version Visualization version GIF version | ||
| Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| sup00 | ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sup 9337 | . 2 ⊢ sup(𝐵, ∅, 𝑅) = ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
| 2 | rab0 4335 | . . 3 ⊢ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∅ | |
| 3 | 2 | unieqi 4872 | . 2 ⊢ ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∪ ∅ |
| 4 | uni0 4888 | . 2 ⊢ ∪ ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2760 | 1 ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∀wral 3048 ∃wrex 3057 {crab 3396 ∅c0 4282 ∪ cuni 4860 class class class wbr 5095 supcsup 9335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 df-uni 4861 df-sup 9337 |
| This theorem is referenced by: inf00 9403 |
| Copyright terms: Public domain | W3C validator |