| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sup00 | Structured version Visualization version GIF version | ||
| Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| sup00 | ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sup 9399 | . 2 ⊢ sup(𝐵, ∅, 𝑅) = ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
| 2 | rab0 4351 | . . 3 ⊢ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∅ | |
| 3 | 2 | unieqi 4885 | . 2 ⊢ ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∪ ∅ |
| 4 | uni0 4901 | . 2 ⊢ ∪ ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2757 | 1 ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∀wral 3045 ∃wrex 3054 {crab 3408 ∅c0 4298 ∪ cuni 4873 class class class wbr 5109 supcsup 9397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 df-sn 4592 df-uni 4874 df-sup 9399 |
| This theorem is referenced by: inf00 9465 |
| Copyright terms: Public domain | W3C validator |