| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sup00 | Structured version Visualization version GIF version | ||
| Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| sup00 | ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sup 9321 | . 2 ⊢ sup(𝐵, ∅, 𝑅) = ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
| 2 | rab0 4331 | . . 3 ⊢ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∅ | |
| 3 | 2 | unieqi 4866 | . 2 ⊢ ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∪ ∅ |
| 4 | uni0 4882 | . 2 ⊢ ∪ ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2758 | 1 ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∀wral 3047 ∃wrex 3056 {crab 3395 ∅c0 4278 ∪ cuni 4854 class class class wbr 5086 supcsup 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4279 df-sn 4572 df-uni 4855 df-sup 9321 |
| This theorem is referenced by: inf00 9387 |
| Copyright terms: Public domain | W3C validator |