MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup00 Structured version   Visualization version   GIF version

Theorem sup00 9223
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup00 sup(𝐵, ∅, 𝑅) = ∅

Proof of Theorem sup00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 9201 . 2 sup(𝐵, ∅, 𝑅) = {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
2 rab0 4316 . . 3 {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = ∅
32unieqi 4852 . 2 {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} =
4 uni0 4869 . 2 ∅ = ∅
51, 3, 43eqtri 2770 1 sup(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wral 3064  wrex 3065  {crab 3068  c0 4256   cuni 4839   class class class wbr 5074  supcsup 9199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-uni 4840  df-sup 9201
This theorem is referenced by:  inf00  9265
  Copyright terms: Public domain W3C validator