MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup00 Structured version   Visualization version   GIF version

Theorem sup00 9422
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup00 sup(𝐵, ∅, 𝑅) = ∅

Proof of Theorem sup00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 9399 . 2 sup(𝐵, ∅, 𝑅) = {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
2 rab0 4351 . . 3 {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = ∅
32unieqi 4885 . 2 {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} =
4 uni0 4901 . 2 ∅ = ∅
51, 3, 43eqtri 2757 1 sup(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wral 3045  wrex 3054  {crab 3408  c0 4298   cuni 4873   class class class wbr 5109  supcsup 9397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-ss 3933  df-nul 4299  df-sn 4592  df-uni 4874  df-sup 9399
This theorem is referenced by:  inf00  9465
  Copyright terms: Public domain W3C validator