![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mulassocd | Structured version Visualization version GIF version |
Description: MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-mulassocd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
int-mulassocd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
int-mulassocd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
int-mulassocd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-mulassocd | ⊢ (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mulassocd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | recnd 11318 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
3 | int-mulassocd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | recnd 11318 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
5 | int-mulassocd.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
6 | 5 | recnd 11318 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
7 | 2, 4, 6 | mulassd 11313 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) · 𝐷) = (𝐵 · (𝐶 · 𝐷))) |
8 | int-mulassocd.4 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
9 | 8 | eqcomd 2746 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝐴) |
10 | 9 | oveq1d 7463 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶)) |
11 | 10 | oveq1d 7463 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) · 𝐷) = ((𝐴 · 𝐶) · 𝐷)) |
12 | 7, 11 | eqtr3d 2782 | 1 ⊢ (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-mulass 11250 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |