Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mulassocd Structured version   Visualization version   GIF version

Theorem int-mulassocd 44131
Description: MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mulassocd.1 (𝜑𝐵 ∈ ℝ)
int-mulassocd.2 (𝜑𝐶 ∈ ℝ)
int-mulassocd.3 (𝜑𝐷 ∈ ℝ)
int-mulassocd.4 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mulassocd (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷))

Proof of Theorem int-mulassocd
StepHypRef Expression
1 int-mulassocd.1 . . . 4 (𝜑𝐵 ∈ ℝ)
21recnd 11272 . . 3 (𝜑𝐵 ∈ ℂ)
3 int-mulassocd.2 . . . 4 (𝜑𝐶 ∈ ℝ)
43recnd 11272 . . 3 (𝜑𝐶 ∈ ℂ)
5 int-mulassocd.3 . . . 4 (𝜑𝐷 ∈ ℝ)
65recnd 11272 . . 3 (𝜑𝐷 ∈ ℂ)
72, 4, 6mulassd 11267 . 2 (𝜑 → ((𝐵 · 𝐶) · 𝐷) = (𝐵 · (𝐶 · 𝐷)))
8 int-mulassocd.4 . . . . 5 (𝜑𝐴 = 𝐵)
98eqcomd 2740 . . . 4 (𝜑𝐵 = 𝐴)
109oveq1d 7429 . . 3 (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶))
1110oveq1d 7429 . 2 (𝜑 → ((𝐵 · 𝐶) · 𝐷) = ((𝐴 · 𝐶) · 𝐷))
127, 11eqtr3d 2771 1 (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  (class class class)co 7414  cr 11137   · cmul 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-resscn 11195  ax-mulass 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-iota 6495  df-fv 6550  df-ov 7417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator