| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mulassocd | Structured version Visualization version GIF version | ||
| Description: MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| int-mulassocd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| int-mulassocd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| int-mulassocd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| int-mulassocd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| int-mulassocd | ⊢ (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-mulassocd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | 1 | recnd 11272 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | int-mulassocd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | 3 | recnd 11272 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 5 | int-mulassocd.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 6 | 5 | recnd 11272 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 7 | 2, 4, 6 | mulassd 11267 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) · 𝐷) = (𝐵 · (𝐶 · 𝐷))) |
| 8 | int-mulassocd.4 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 9 | 8 | eqcomd 2740 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 10 | 9 | oveq1d 7429 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶)) |
| 11 | 10 | oveq1d 7429 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) · 𝐷) = ((𝐴 · 𝐶) · 𝐷)) |
| 12 | 7, 11 | eqtr3d 2771 | 1 ⊢ (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7414 ℝcr 11137 · cmul 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-resscn 11195 ax-mulass 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 df-ov 7417 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |