Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mulcomd | Structured version Visualization version GIF version |
Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-mulcomd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
int-mulcomd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
int-mulcomd.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-mulcomd | ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mulcomd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | recnd 11003 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
3 | int-mulcomd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | recnd 11003 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
5 | 2, 4 | mulcomd 10996 | . 2 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
6 | int-mulcomd.3 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
7 | 6 | eqcomd 2744 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) |
8 | 7 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴)) |
9 | 5, 8 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-mulcom 10935 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |