| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mulcomd | Structured version Visualization version GIF version | ||
| Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| int-mulcomd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| int-mulcomd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| int-mulcomd.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| int-mulcomd | ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-mulcomd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | 1 | recnd 11271 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | int-mulcomd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | 3 | recnd 11271 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 5 | 2, 4 | mulcomd 11264 | . 2 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 6 | int-mulcomd.3 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 7 | 6 | eqcomd 2740 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 8 | 7 | oveq2d 7429 | . 2 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴)) |
| 9 | 5, 8 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℝcr 11136 · cmul 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-resscn 11194 ax-mulcom 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |