Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mulcomd Structured version   Visualization version   GIF version

Theorem int-mulcomd 44158
Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mulcomd.1 (𝜑𝐵 ∈ ℝ)
int-mulcomd.2 (𝜑𝐶 ∈ ℝ)
int-mulcomd.3 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mulcomd (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴))

Proof of Theorem int-mulcomd
StepHypRef Expression
1 int-mulcomd.1 . . . 4 (𝜑𝐵 ∈ ℝ)
21recnd 11208 . . 3 (𝜑𝐵 ∈ ℂ)
3 int-mulcomd.2 . . . 4 (𝜑𝐶 ∈ ℝ)
43recnd 11208 . . 3 (𝜑𝐶 ∈ ℂ)
52, 4mulcomd 11201 . 2 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
6 int-mulcomd.3 . . . 4 (𝜑𝐴 = 𝐵)
76eqcomd 2736 . . 3 (𝜑𝐵 = 𝐴)
87oveq2d 7405 . 2 (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴))
95, 8eqtrd 2765 1 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7389  cr 11073   · cmul 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-resscn 11131  ax-mulcom 11138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator