Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mulcomd Structured version   Visualization version   GIF version

Theorem int-mulcomd 43637
Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mulcomd.1 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
int-mulcomd.2 (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
int-mulcomd.3 (๐œ‘ โ†’ ๐ด = ๐ต)
Assertion
Ref Expression
int-mulcomd (๐œ‘ โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ด))

Proof of Theorem int-mulcomd
StepHypRef Expression
1 int-mulcomd.1 . . . 4 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
21recnd 11280 . . 3 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
3 int-mulcomd.2 . . . 4 (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
43recnd 11280 . . 3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
52, 4mulcomd 11273 . 2 (๐œ‘ โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
6 int-mulcomd.3 . . . 4 (๐œ‘ โ†’ ๐ด = ๐ต)
76eqcomd 2734 . . 3 (๐œ‘ โ†’ ๐ต = ๐ด)
87oveq2d 7442 . 2 (๐œ‘ โ†’ (๐ถ ยท ๐ต) = (๐ถ ยท ๐ด))
95, 8eqtrd 2768 1 (๐œ‘ โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1533   โˆˆ wcel 2098  (class class class)co 7426  โ„cr 11145   ยท cmul 11151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-resscn 11203  ax-mulcom 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator