Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mulcomd Structured version   Visualization version   GIF version

Theorem int-mulcomd 44137
Description: MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mulcomd.1 (𝜑𝐵 ∈ ℝ)
int-mulcomd.2 (𝜑𝐶 ∈ ℝ)
int-mulcomd.3 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mulcomd (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴))

Proof of Theorem int-mulcomd
StepHypRef Expression
1 int-mulcomd.1 . . . 4 (𝜑𝐵 ∈ ℝ)
21recnd 11220 . . 3 (𝜑𝐵 ∈ ℂ)
3 int-mulcomd.2 . . . 4 (𝜑𝐶 ∈ ℝ)
43recnd 11220 . . 3 (𝜑𝐶 ∈ ℂ)
52, 4mulcomd 11213 . 2 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
6 int-mulcomd.3 . . . 4 (𝜑𝐴 = 𝐵)
76eqcomd 2736 . . 3 (𝜑𝐵 = 𝐴)
87oveq2d 7410 . 2 (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴))
95, 8eqtrd 2765 1 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7394  cr 11085   · cmul 11091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-resscn 11143  ax-mulcom 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ov 7397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator