| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recnd | Structured version Visualization version GIF version | ||
| Description: Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| recnd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| recnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | recn 11245 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Copyright terms: Public domain | W3C validator |