MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intpr Structured version   Visualization version   GIF version

Theorem intpr 4782
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
Hypotheses
Ref Expression
intpr.1 𝐴 ∈ V
intpr.2 𝐵 ∈ V
Assertion
Ref Expression
intpr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem intpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1833 . . . 4 (∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
2 vex 3418 . . . . . . . 8 𝑦 ∈ V
32elpr 4464 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
43imbi1i 342 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦))
5 jaob 944 . . . . . 6 (((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 267 . . . . 5 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
76albii 1782 . . . 4 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
8 intpr.1 . . . . . 6 𝐴 ∈ V
98clel4 3570 . . . . 5 (𝑥𝐴 ↔ ∀𝑦(𝑦 = 𝐴𝑥𝑦))
10 intpr.2 . . . . . 6 𝐵 ∈ V
1110clel4 3570 . . . . 5 (𝑥𝐵 ↔ ∀𝑦(𝑦 = 𝐵𝑥𝑦))
129, 11anbi12i 617 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
131, 7, 123bitr4i 295 . . 3 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ (𝑥𝐴𝑥𝐵))
14 vex 3418 . . . 4 𝑥 ∈ V
1514elint 4755 . . 3 (𝑥 {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦))
16 elin 4057 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1713, 15, 163bitr4i 295 . 2 (𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵))
1817eqriv 2775 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 833  wal 1505   = wceq 1507  wcel 2050  Vcvv 3415  cin 3828  {cpr 4443   cint 4749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-v 3417  df-un 3834  df-in 3836  df-sn 4442  df-pr 4444  df-int 4750
This theorem is referenced by:  intprg  4783  uniintsn  4786  op1stb  5220  fiint  8590  shincli  28920  chincli  29018
  Copyright terms: Public domain W3C validator