MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intpr Structured version   Visualization version   GIF version

Theorem intpr 5006
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) Prove from intprg 5005. (Revised by BJ, 1-Sep-2024.)
Hypotheses
Ref Expression
intpr.1 𝐴 ∈ V
intpr.2 𝐵 ∈ V
Assertion
Ref Expression
intpr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem intpr
StepHypRef Expression
1 intpr.1 . 2 𝐴 ∈ V
2 intpr.2 . 2 𝐵 ∈ V
3 intprg 5005 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3mp2an 691 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  {cpr 4650   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-in 3983  df-sn 4649  df-pr 4651  df-int 4971
This theorem is referenced by:  uniintsn  5009  op1stb  5491  fiint  9394  fiintOLD  9395  shincli  31394  chincli  31492
  Copyright terms: Public domain W3C validator