| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intpr | Structured version Visualization version GIF version | ||
| Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) Prove from intprg 4962. (Revised by BJ, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| intpr.1 | ⊢ 𝐴 ∈ V |
| intpr.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| intpr | ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | intpr.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | intprg 4962 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 {cpr 4608 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-in 3938 df-sn 4607 df-pr 4609 df-int 4928 |
| This theorem is referenced by: uniintsn 4966 op1stb 5451 fiint 9343 fiintOLD 9344 shincli 31348 chincli 31446 |
| Copyright terms: Public domain | W3C validator |