![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intpr | Structured version Visualization version GIF version |
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) Prove from intprg 4986. (Revised by BJ, 1-Sep-2024.) |
Ref | Expression |
---|---|
intpr.1 | ⊢ 𝐴 ∈ V |
intpr.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
intpr | ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | intpr.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | intprg 4986 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 {cpr 4633 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-in 3970 df-sn 4632 df-pr 4634 df-int 4952 |
This theorem is referenced by: uniintsn 4990 op1stb 5482 fiint 9364 fiintOLD 9365 shincli 31391 chincli 31489 |
Copyright terms: Public domain | W3C validator |