![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intpr | Structured version Visualization version GIF version |
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) Prove from intprg 5005. (Revised by BJ, 1-Sep-2024.) |
Ref | Expression |
---|---|
intpr.1 | ⊢ 𝐴 ∈ V |
intpr.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
intpr | ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | intpr.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | intprg 5005 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 {cpr 4650 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-in 3983 df-sn 4649 df-pr 4651 df-int 4971 |
This theorem is referenced by: uniintsn 5009 op1stb 5491 fiint 9394 fiintOLD 9395 shincli 31394 chincli 31492 |
Copyright terms: Public domain | W3C validator |