| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | elexi 3461 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | elexi 3461 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4935 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
| 7 | 2, 4 | prss 4774 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
| 9 | 2 | prnz 4731 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | chintcli 31293 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
| 12 | 5, 11 | eqeltrri 2825 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {cpr 4581 ∩ cint 4899 Cℋ cch 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 ax-hilex 30961 ax-hfvadd 30962 ax-hv0cl 30965 ax-hfvmul 30967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-map 8762 df-nn 12147 df-sh 31169 df-ch 31183 |
| This theorem is referenced by: chdmm1i 31439 chdmj1i 31443 chincl 31461 ledii 31498 lejdii 31500 lejdiri 31501 pjoml2i 31547 pjoml3i 31548 pjoml4i 31549 pjoml6i 31551 cmcmlem 31553 cmcm2i 31555 cmbr2i 31558 cmbr3i 31562 cmm1i 31568 fh3i 31585 fh4i 31586 cm2mi 31588 qlaxr3i 31598 osumcori 31605 osumcor2i 31606 spansnm0i 31612 5oai 31623 3oalem5 31628 3oalem6 31629 3oai 31630 pjssmii 31643 pjssge0ii 31644 pjcji 31646 pjocini 31660 mayetes3i 31691 pjssdif2i 32136 pjssdif1i 32137 pjin1i 32154 pjin3i 32156 pjclem1 32157 pjclem4 32161 pjci 32162 pjcmul1i 32163 pjcmul2i 32164 pj3si 32169 pj3cor1i 32171 stji1i 32204 stm1i 32205 stm1add3i 32209 jpi 32232 golem1 32233 golem2 32234 goeqi 32235 stcltrlem2 32239 mdslle1i 32279 mdslj1i 32281 mdslj2i 32282 mdsl1i 32283 mdsl2i 32284 mdsl2bi 32285 cvmdi 32286 mdslmd1lem1 32287 mdslmd1lem2 32288 mdslmd1i 32291 mdsldmd1i 32293 mdslmd3i 32294 mdslmd4i 32295 csmdsymi 32296 mdexchi 32297 hatomistici 32324 chrelat2i 32327 cvexchlem 32330 cvexchi 32331 sumdmdlem2 32381 mdcompli 32391 dmdcompli 32392 mddmdin0i 32393 |
| Copyright terms: Public domain | W3C validator |