| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | elexi 3459 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | elexi 3459 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4932 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
| 7 | 2, 4 | prss 4772 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
| 9 | 2 | prnz 4730 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | chintcli 31306 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
| 12 | 5, 11 | eqeltrri 2828 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {cpr 4578 ∩ cint 4897 Cℋ cch 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 ax-hilex 30974 ax-hfvadd 30975 ax-hv0cl 30978 ax-hfvmul 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-map 8752 df-nn 12123 df-sh 31182 df-ch 31196 |
| This theorem is referenced by: chdmm1i 31452 chdmj1i 31456 chincl 31474 ledii 31511 lejdii 31513 lejdiri 31514 pjoml2i 31560 pjoml3i 31561 pjoml4i 31562 pjoml6i 31564 cmcmlem 31566 cmcm2i 31568 cmbr2i 31571 cmbr3i 31575 cmm1i 31581 fh3i 31598 fh4i 31599 cm2mi 31601 qlaxr3i 31611 osumcori 31618 osumcor2i 31619 spansnm0i 31625 5oai 31636 3oalem5 31641 3oalem6 31642 3oai 31643 pjssmii 31656 pjssge0ii 31657 pjcji 31659 pjocini 31673 mayetes3i 31704 pjssdif2i 32149 pjssdif1i 32150 pjin1i 32167 pjin3i 32169 pjclem1 32170 pjclem4 32174 pjci 32175 pjcmul1i 32176 pjcmul2i 32177 pj3si 32182 pj3cor1i 32184 stji1i 32217 stm1i 32218 stm1add3i 32222 jpi 32245 golem1 32246 golem2 32247 goeqi 32248 stcltrlem2 32252 mdslle1i 32292 mdslj1i 32294 mdslj2i 32295 mdsl1i 32296 mdsl2i 32297 mdsl2bi 32298 cvmdi 32299 mdslmd1lem1 32300 mdslmd1lem2 32301 mdslmd1i 32304 mdsldmd1i 32306 mdslmd3i 32307 mdslmd4i 32308 csmdsymi 32309 mdexchi 32310 hatomistici 32337 chrelat2i 32340 cvexchlem 32343 cvexchi 32344 sumdmdlem2 32394 mdcompli 32404 dmdcompli 32405 mddmdin0i 32406 |
| Copyright terms: Public domain | W3C validator |