![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version |
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | elexi 3511 | . . 3 ⊢ 𝐴 ∈ V |
3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | elexi 3511 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 5006 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
7 | 2, 4 | prss 4845 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
9 | 2 | prnz 4802 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | chintcli 31363 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
12 | 5, 11 | eqeltrri 2841 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {cpr 4650 ∩ cint 4970 Cℋ cch 30961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 ax-hilex 31031 ax-hfvadd 31032 ax-hv0cl 31035 ax-hfvmul 31037 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-map 8886 df-nn 12294 df-sh 31239 df-ch 31253 |
This theorem is referenced by: chdmm1i 31509 chdmj1i 31513 chincl 31531 ledii 31568 lejdii 31570 lejdiri 31571 pjoml2i 31617 pjoml3i 31618 pjoml4i 31619 pjoml6i 31621 cmcmlem 31623 cmcm2i 31625 cmbr2i 31628 cmbr3i 31632 cmm1i 31638 fh3i 31655 fh4i 31656 cm2mi 31658 qlaxr3i 31668 osumcori 31675 osumcor2i 31676 spansnm0i 31682 5oai 31693 3oalem5 31698 3oalem6 31699 3oai 31700 pjssmii 31713 pjssge0ii 31714 pjcji 31716 pjocini 31730 mayetes3i 31761 pjssdif2i 32206 pjssdif1i 32207 pjin1i 32224 pjin3i 32226 pjclem1 32227 pjclem4 32231 pjci 32232 pjcmul1i 32233 pjcmul2i 32234 pj3si 32239 pj3cor1i 32241 stji1i 32274 stm1i 32275 stm1add3i 32279 jpi 32302 golem1 32303 golem2 32304 goeqi 32305 stcltrlem2 32309 mdslle1i 32349 mdslj1i 32351 mdslj2i 32352 mdsl1i 32353 mdsl2i 32354 mdsl2bi 32355 cvmdi 32356 mdslmd1lem1 32357 mdslmd1lem2 32358 mdslmd1i 32361 mdsldmd1i 32363 mdslmd3i 32364 mdslmd4i 32365 csmdsymi 32366 mdexchi 32367 hatomistici 32394 chrelat2i 32397 cvexchlem 32400 cvexchi 32401 sumdmdlem2 32451 mdcompli 32461 dmdcompli 32462 mddmdin0i 32463 |
Copyright terms: Public domain | W3C validator |