Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version |
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | elexi 3441 | . . 3 ⊢ 𝐴 ∈ V |
3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | elexi 3441 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 4910 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
7 | 2, 4 | prss 4750 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
8 | 6, 7 | mpbi 229 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
9 | 2 | prnz 4710 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | chintcli 29594 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
12 | 5, 11 | eqeltrri 2836 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {cpr 4560 ∩ cint 4876 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 ax-hilex 29262 ax-hfvadd 29263 ax-hv0cl 29266 ax-hfvmul 29268 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-nn 11904 df-sh 29470 df-ch 29484 |
This theorem is referenced by: chdmm1i 29740 chdmj1i 29744 chincl 29762 ledii 29799 lejdii 29801 lejdiri 29802 pjoml2i 29848 pjoml3i 29849 pjoml4i 29850 pjoml6i 29852 cmcmlem 29854 cmcm2i 29856 cmbr2i 29859 cmbr3i 29863 cmm1i 29869 fh3i 29886 fh4i 29887 cm2mi 29889 qlaxr3i 29899 osumcori 29906 osumcor2i 29907 spansnm0i 29913 5oai 29924 3oalem5 29929 3oalem6 29930 3oai 29931 pjssmii 29944 pjssge0ii 29945 pjcji 29947 pjocini 29961 mayetes3i 29992 pjssdif2i 30437 pjssdif1i 30438 pjin1i 30455 pjin3i 30457 pjclem1 30458 pjclem4 30462 pjci 30463 pjcmul1i 30464 pjcmul2i 30465 pj3si 30470 pj3cor1i 30472 stji1i 30505 stm1i 30506 stm1add3i 30510 jpi 30533 golem1 30534 golem2 30535 goeqi 30536 stcltrlem2 30540 mdslle1i 30580 mdslj1i 30582 mdslj2i 30583 mdsl1i 30584 mdsl2i 30585 mdsl2bi 30586 cvmdi 30587 mdslmd1lem1 30588 mdslmd1lem2 30589 mdslmd1i 30592 mdsldmd1i 30594 mdslmd3i 30595 mdslmd4i 30596 csmdsymi 30597 mdexchi 30598 hatomistici 30625 chrelat2i 30628 cvexchlem 30631 cvexchi 30632 sumdmdlem2 30682 mdcompli 30692 dmdcompli 30693 mddmdin0i 30694 |
Copyright terms: Public domain | W3C validator |