| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | elexi 3482 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | elexi 3482 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4958 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
| 7 | 2, 4 | prss 4796 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
| 9 | 2 | prnz 4753 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | chintcli 31312 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
| 12 | 5, 11 | eqeltrri 2831 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {cpr 4603 ∩ cint 4922 Cℋ cch 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 ax-hilex 30980 ax-hfvadd 30981 ax-hv0cl 30984 ax-hfvmul 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-map 8842 df-nn 12241 df-sh 31188 df-ch 31202 |
| This theorem is referenced by: chdmm1i 31458 chdmj1i 31462 chincl 31480 ledii 31517 lejdii 31519 lejdiri 31520 pjoml2i 31566 pjoml3i 31567 pjoml4i 31568 pjoml6i 31570 cmcmlem 31572 cmcm2i 31574 cmbr2i 31577 cmbr3i 31581 cmm1i 31587 fh3i 31604 fh4i 31605 cm2mi 31607 qlaxr3i 31617 osumcori 31624 osumcor2i 31625 spansnm0i 31631 5oai 31642 3oalem5 31647 3oalem6 31648 3oai 31649 pjssmii 31662 pjssge0ii 31663 pjcji 31665 pjocini 31679 mayetes3i 31710 pjssdif2i 32155 pjssdif1i 32156 pjin1i 32173 pjin3i 32175 pjclem1 32176 pjclem4 32180 pjci 32181 pjcmul1i 32182 pjcmul2i 32183 pj3si 32188 pj3cor1i 32190 stji1i 32223 stm1i 32224 stm1add3i 32228 jpi 32251 golem1 32252 golem2 32253 goeqi 32254 stcltrlem2 32258 mdslle1i 32298 mdslj1i 32300 mdslj2i 32301 mdsl1i 32302 mdsl2i 32303 mdsl2bi 32304 cvmdi 32305 mdslmd1lem1 32306 mdslmd1lem2 32307 mdslmd1i 32310 mdsldmd1i 32312 mdslmd3i 32313 mdslmd4i 32314 csmdsymi 32315 mdexchi 32316 hatomistici 32343 chrelat2i 32346 cvexchlem 32349 cvexchi 32350 sumdmdlem2 32400 mdcompli 32410 dmdcompli 32411 mddmdin0i 32412 |
| Copyright terms: Public domain | W3C validator |