| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | elexi 3470 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | elexi 3470 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4946 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
| 7 | 2, 4 | prss 4784 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
| 9 | 2 | prnz 4741 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | chintcli 31260 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
| 12 | 5, 11 | eqeltrri 2825 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {cpr 4591 ∩ cint 4910 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 ax-hilex 30928 ax-hfvadd 30929 ax-hv0cl 30932 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-sh 31136 df-ch 31150 |
| This theorem is referenced by: chdmm1i 31406 chdmj1i 31410 chincl 31428 ledii 31465 lejdii 31467 lejdiri 31468 pjoml2i 31514 pjoml3i 31515 pjoml4i 31516 pjoml6i 31518 cmcmlem 31520 cmcm2i 31522 cmbr2i 31525 cmbr3i 31529 cmm1i 31535 fh3i 31552 fh4i 31553 cm2mi 31555 qlaxr3i 31565 osumcori 31572 osumcor2i 31573 spansnm0i 31579 5oai 31590 3oalem5 31595 3oalem6 31596 3oai 31597 pjssmii 31610 pjssge0ii 31611 pjcji 31613 pjocini 31627 mayetes3i 31658 pjssdif2i 32103 pjssdif1i 32104 pjin1i 32121 pjin3i 32123 pjclem1 32124 pjclem4 32128 pjci 32129 pjcmul1i 32130 pjcmul2i 32131 pj3si 32136 pj3cor1i 32138 stji1i 32171 stm1i 32172 stm1add3i 32176 jpi 32199 golem1 32200 golem2 32201 goeqi 32202 stcltrlem2 32206 mdslle1i 32246 mdslj1i 32248 mdslj2i 32249 mdsl1i 32250 mdsl2i 32251 mdsl2bi 32252 cvmdi 32253 mdslmd1lem1 32254 mdslmd1lem2 32255 mdslmd1i 32258 mdsldmd1i 32260 mdslmd3i 32261 mdslmd4i 32262 csmdsymi 32263 mdexchi 32264 hatomistici 32291 chrelat2i 32294 cvexchlem 32297 cvexchi 32298 sumdmdlem2 32348 mdcompli 32358 dmdcompli 32359 mddmdin0i 32360 |
| Copyright terms: Public domain | W3C validator |