![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version |
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | elexi 3494 | . . 3 ⊢ 𝐴 ∈ V |
3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | elexi 3494 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 4985 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 472 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
7 | 2, 4 | prss 4822 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
8 | 6, 7 | mpbi 229 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
9 | 2 | prnz 4780 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 472 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | chintcli 30562 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
12 | 5, 11 | eqeltrri 2831 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∈ wcel 2107 ≠ wne 2941 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {cpr 4629 ∩ cint 4949 Cℋ cch 30160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 ax-hilex 30230 ax-hfvadd 30231 ax-hv0cl 30234 ax-hfvmul 30236 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-map 8818 df-nn 12209 df-sh 30438 df-ch 30452 |
This theorem is referenced by: chdmm1i 30708 chdmj1i 30712 chincl 30730 ledii 30767 lejdii 30769 lejdiri 30770 pjoml2i 30816 pjoml3i 30817 pjoml4i 30818 pjoml6i 30820 cmcmlem 30822 cmcm2i 30824 cmbr2i 30827 cmbr3i 30831 cmm1i 30837 fh3i 30854 fh4i 30855 cm2mi 30857 qlaxr3i 30867 osumcori 30874 osumcor2i 30875 spansnm0i 30881 5oai 30892 3oalem5 30897 3oalem6 30898 3oai 30899 pjssmii 30912 pjssge0ii 30913 pjcji 30915 pjocini 30929 mayetes3i 30960 pjssdif2i 31405 pjssdif1i 31406 pjin1i 31423 pjin3i 31425 pjclem1 31426 pjclem4 31430 pjci 31431 pjcmul1i 31432 pjcmul2i 31433 pj3si 31438 pj3cor1i 31440 stji1i 31473 stm1i 31474 stm1add3i 31478 jpi 31501 golem1 31502 golem2 31503 goeqi 31504 stcltrlem2 31508 mdslle1i 31548 mdslj1i 31550 mdslj2i 31551 mdsl1i 31552 mdsl2i 31553 mdsl2bi 31554 cvmdi 31555 mdslmd1lem1 31556 mdslmd1lem2 31557 mdslmd1i 31560 mdsldmd1i 31562 mdslmd3i 31563 mdslmd4i 31564 csmdsymi 31565 mdexchi 31566 hatomistici 31593 chrelat2i 31596 cvexchlem 31599 cvexchi 31600 sumdmdlem2 31650 mdcompli 31660 dmdcompli 31661 mddmdin0i 31662 |
Copyright terms: Public domain | W3C validator |