| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | elexi 3473 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | elexi 3473 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4949 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
| 7 | 2, 4 | prss 4787 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
| 9 | 2 | prnz 4744 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | chintcli 31267 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
| 12 | 5, 11 | eqeltrri 2826 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {cpr 4594 ∩ cint 4913 Cℋ cch 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-nn 12194 df-sh 31143 df-ch 31157 |
| This theorem is referenced by: chdmm1i 31413 chdmj1i 31417 chincl 31435 ledii 31472 lejdii 31474 lejdiri 31475 pjoml2i 31521 pjoml3i 31522 pjoml4i 31523 pjoml6i 31525 cmcmlem 31527 cmcm2i 31529 cmbr2i 31532 cmbr3i 31536 cmm1i 31542 fh3i 31559 fh4i 31560 cm2mi 31562 qlaxr3i 31572 osumcori 31579 osumcor2i 31580 spansnm0i 31586 5oai 31597 3oalem5 31602 3oalem6 31603 3oai 31604 pjssmii 31617 pjssge0ii 31618 pjcji 31620 pjocini 31634 mayetes3i 31665 pjssdif2i 32110 pjssdif1i 32111 pjin1i 32128 pjin3i 32130 pjclem1 32131 pjclem4 32135 pjci 32136 pjcmul1i 32137 pjcmul2i 32138 pj3si 32143 pj3cor1i 32145 stji1i 32178 stm1i 32179 stm1add3i 32183 jpi 32206 golem1 32207 golem2 32208 goeqi 32209 stcltrlem2 32213 mdslle1i 32253 mdslj1i 32255 mdslj2i 32256 mdsl1i 32257 mdsl2i 32258 mdsl2bi 32259 cvmdi 32260 mdslmd1lem1 32261 mdslmd1lem2 32262 mdslmd1i 32265 mdsldmd1i 32267 mdslmd3i 32268 mdslmd4i 32269 csmdsymi 32270 mdexchi 32271 hatomistici 32298 chrelat2i 32301 cvexchlem 32304 cvexchi 32305 sumdmdlem2 32355 mdcompli 32365 dmdcompli 32366 mddmdin0i 32367 |
| Copyright terms: Public domain | W3C validator |