| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version | ||
| Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | elexi 3460 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | elexi 3460 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4932 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
| 7 | 2, 4 | prss 4771 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
| 9 | 2 | prnz 4729 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | chintcli 31313 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
| 12 | 5, 11 | eqeltrri 2830 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {cpr 4577 ∩ cint 4897 Cℋ cch 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 ax-hilex 30981 ax-hfvadd 30982 ax-hv0cl 30985 ax-hfvmul 30987 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-map 8758 df-nn 12133 df-sh 31189 df-ch 31203 |
| This theorem is referenced by: chdmm1i 31459 chdmj1i 31463 chincl 31481 ledii 31518 lejdii 31520 lejdiri 31521 pjoml2i 31567 pjoml3i 31568 pjoml4i 31569 pjoml6i 31571 cmcmlem 31573 cmcm2i 31575 cmbr2i 31578 cmbr3i 31582 cmm1i 31588 fh3i 31605 fh4i 31606 cm2mi 31608 qlaxr3i 31618 osumcori 31625 osumcor2i 31626 spansnm0i 31632 5oai 31643 3oalem5 31648 3oalem6 31649 3oai 31650 pjssmii 31663 pjssge0ii 31664 pjcji 31666 pjocini 31680 mayetes3i 31711 pjssdif2i 32156 pjssdif1i 32157 pjin1i 32174 pjin3i 32176 pjclem1 32177 pjclem4 32181 pjci 32182 pjcmul1i 32183 pjcmul2i 32184 pj3si 32189 pj3cor1i 32191 stji1i 32224 stm1i 32225 stm1add3i 32229 jpi 32252 golem1 32253 golem2 32254 goeqi 32255 stcltrlem2 32259 mdslle1i 32299 mdslj1i 32301 mdslj2i 32302 mdsl1i 32303 mdsl2i 32304 mdsl2bi 32305 cvmdi 32306 mdslmd1lem1 32307 mdslmd1lem2 32308 mdslmd1i 32311 mdsldmd1i 32313 mdslmd3i 32314 mdslmd4i 32315 csmdsymi 32316 mdexchi 32317 hatomistici 32344 chrelat2i 32347 cvexchlem 32350 cvexchi 32351 sumdmdlem2 32401 mdcompli 32411 dmdcompli 32412 mddmdin0i 32413 |
| Copyright terms: Public domain | W3C validator |