![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chincli | Structured version Visualization version GIF version |
Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chincli | ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | elexi 3500 | . . 3 ⊢ 𝐴 ∈ V |
3 | chjcl.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | elexi 3500 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 4986 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) |
7 | 2, 4 | prss 4824 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ↔ {𝐴, 𝐵} ⊆ Cℋ ) |
8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Cℋ |
9 | 2 | prnz 4781 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Cℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | chintcli 31359 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Cℋ |
12 | 5, 11 | eqeltrri 2835 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2105 ≠ wne 2937 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 {cpr 4632 ∩ cint 4950 Cℋ cch 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addcl 11212 ax-hilex 31027 ax-hfvadd 31028 ax-hv0cl 31031 ax-hfvmul 31033 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-map 8866 df-nn 12264 df-sh 31235 df-ch 31249 |
This theorem is referenced by: chdmm1i 31505 chdmj1i 31509 chincl 31527 ledii 31564 lejdii 31566 lejdiri 31567 pjoml2i 31613 pjoml3i 31614 pjoml4i 31615 pjoml6i 31617 cmcmlem 31619 cmcm2i 31621 cmbr2i 31624 cmbr3i 31628 cmm1i 31634 fh3i 31651 fh4i 31652 cm2mi 31654 qlaxr3i 31664 osumcori 31671 osumcor2i 31672 spansnm0i 31678 5oai 31689 3oalem5 31694 3oalem6 31695 3oai 31696 pjssmii 31709 pjssge0ii 31710 pjcji 31712 pjocini 31726 mayetes3i 31757 pjssdif2i 32202 pjssdif1i 32203 pjin1i 32220 pjin3i 32222 pjclem1 32223 pjclem4 32227 pjci 32228 pjcmul1i 32229 pjcmul2i 32230 pj3si 32235 pj3cor1i 32237 stji1i 32270 stm1i 32271 stm1add3i 32275 jpi 32298 golem1 32299 golem2 32300 goeqi 32301 stcltrlem2 32305 mdslle1i 32345 mdslj1i 32347 mdslj2i 32348 mdsl1i 32349 mdsl2i 32350 mdsl2bi 32351 cvmdi 32352 mdslmd1lem1 32353 mdslmd1lem2 32354 mdslmd1i 32357 mdsldmd1i 32359 mdslmd3i 32360 mdslmd4i 32361 csmdsymi 32362 mdexchi 32363 hatomistici 32390 chrelat2i 32393 cvexchlem 32396 cvexchi 32397 sumdmdlem2 32447 mdcompli 32457 dmdcompli 32458 mddmdin0i 32459 |
Copyright terms: Public domain | W3C validator |