MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniintsn Structured version   Visualization version   GIF version

Theorem uniintsn 4905
Description: Two ways to express "𝐴 is a singleton." See also en1 8570, en1b 8571, card1 9391, and eusn 4659. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
uniintsn ( 𝐴 = 𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vn0 4303 . . . . . 6 V ≠ ∅
2 inteq 4871 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 4882 . . . . . . . . . . 11 ∅ = V
42, 3syl6eq 2872 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = V)
54adantl 484 . . . . . . . . 9 (( 𝐴 = 𝐴𝐴 = ∅) → 𝐴 = V)
6 unieq 4839 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
7 uni0 4858 . . . . . . . . . . . 12 ∅ = ∅
86, 7syl6eq 2872 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
9 eqeq1 2825 . . . . . . . . . . 11 ( 𝐴 = 𝐴 → ( 𝐴 = ∅ ↔ 𝐴 = ∅))
108, 9syl5ib 246 . . . . . . . . . 10 ( 𝐴 = 𝐴 → (𝐴 = ∅ → 𝐴 = ∅))
1110imp 409 . . . . . . . . 9 (( 𝐴 = 𝐴𝐴 = ∅) → 𝐴 = ∅)
125, 11eqtr3d 2858 . . . . . . . 8 (( 𝐴 = 𝐴𝐴 = ∅) → V = ∅)
1312ex 415 . . . . . . 7 ( 𝐴 = 𝐴 → (𝐴 = ∅ → V = ∅))
1413necon3d 3037 . . . . . 6 ( 𝐴 = 𝐴 → (V ≠ ∅ → 𝐴 ≠ ∅))
151, 14mpi 20 . . . . 5 ( 𝐴 = 𝐴𝐴 ≠ ∅)
16 n0 4309 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
1715, 16sylib 220 . . . 4 ( 𝐴 = 𝐴 → ∃𝑥 𝑥𝐴)
18 vex 3497 . . . . . . 7 𝑥 ∈ V
19 vex 3497 . . . . . . 7 𝑦 ∈ V
2018, 19prss 4746 . . . . . 6 ((𝑥𝐴𝑦𝐴) ↔ {𝑥, 𝑦} ⊆ 𝐴)
21 uniss 4852 . . . . . . . . . . . 12 ({𝑥, 𝑦} ⊆ 𝐴 {𝑥, 𝑦} ⊆ 𝐴)
2221adantl 484 . . . . . . . . . . 11 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴)
23 simpl 485 . . . . . . . . . . 11 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → 𝐴 = 𝐴)
2422, 23sseqtrd 4006 . . . . . . . . . 10 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴)
25 intss 4889 . . . . . . . . . . 11 ({𝑥, 𝑦} ⊆ 𝐴 𝐴 {𝑥, 𝑦})
2625adantl 484 . . . . . . . . . 10 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → 𝐴 {𝑥, 𝑦})
2724, 26sstrd 3976 . . . . . . . . 9 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → {𝑥, 𝑦} ⊆ {𝑥, 𝑦})
2818, 19unipr 4844 . . . . . . . . 9 {𝑥, 𝑦} = (𝑥𝑦)
2918, 19intpr 4901 . . . . . . . . 9 {𝑥, 𝑦} = (𝑥𝑦)
3027, 28, 293sstr3g 4010 . . . . . . . 8 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → (𝑥𝑦) ⊆ (𝑥𝑦))
31 inss1 4204 . . . . . . . . 9 (𝑥𝑦) ⊆ 𝑥
32 ssun1 4147 . . . . . . . . 9 𝑥 ⊆ (𝑥𝑦)
3331, 32sstri 3975 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
34 eqss 3981 . . . . . . . . 9 ((𝑥𝑦) = (𝑥𝑦) ↔ ((𝑥𝑦) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)))
35 uneqin 4254 . . . . . . . . 9 ((𝑥𝑦) = (𝑥𝑦) ↔ 𝑥 = 𝑦)
3634, 35bitr3i 279 . . . . . . . 8 (((𝑥𝑦) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) ↔ 𝑥 = 𝑦)
3730, 33, 36sylanblc 591 . . . . . . 7 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → 𝑥 = 𝑦)
3837ex 415 . . . . . 6 ( 𝐴 = 𝐴 → ({𝑥, 𝑦} ⊆ 𝐴𝑥 = 𝑦))
3920, 38syl5bi 244 . . . . 5 ( 𝐴 = 𝐴 → ((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
4039alrimivv 1925 . . . 4 ( 𝐴 = 𝐴 → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
4117, 40jca 514 . . 3 ( 𝐴 = 𝐴 → (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
42 euabsn 4655 . . . 4 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥{𝑥𝑥𝐴} = {𝑥})
43 eleq1w 2895 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
4443eu4 2695 . . . 4 (∃!𝑥 𝑥𝐴 ↔ (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
45 abid2 2957 . . . . . 6 {𝑥𝑥𝐴} = 𝐴
4645eqeq1i 2826 . . . . 5 ({𝑥𝑥𝐴} = {𝑥} ↔ 𝐴 = {𝑥})
4746exbii 1844 . . . 4 (∃𝑥{𝑥𝑥𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})
4842, 44, 473bitr3i 303 . . 3 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) ↔ ∃𝑥 𝐴 = {𝑥})
4941, 48sylib 220 . 2 ( 𝐴 = 𝐴 → ∃𝑥 𝐴 = {𝑥})
5018unisn 4847 . . . 4 {𝑥} = 𝑥
51 unieq 4839 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
52 inteq 4871 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
5318intsn 4904 . . . . 5 {𝑥} = 𝑥
5452, 53syl6eq 2872 . . . 4 (𝐴 = {𝑥} → 𝐴 = 𝑥)
5550, 51, 543eqtr4a 2882 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝐴)
5655exlimiv 1927 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
5749, 56impbii 211 1 ( 𝐴 = 𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110  ∃!weu 2649  {cab 2799  wne 3016  Vcvv 3494  cun 3933  cin 3934  wss 3935  c0 4290  {csn 4560  {cpr 4562   cuni 4831   cint 4868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-sn 4561  df-pr 4563  df-uni 4832  df-int 4869
This theorem is referenced by:  uniintab  4906
  Copyright terms: Public domain W3C validator