MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniintsn Structured version   Visualization version   GIF version

Theorem uniintsn 4819
Description: Two ways to express "𝐴 is a singleton." See also en1 8424, en1b 8425, card1 9243, and eusn 4573. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
uniintsn ( 𝐴 = 𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vn0 4224 . . . . . 6 V ≠ ∅
2 inteq 4785 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 4796 . . . . . . . . . . 11 ∅ = V
42, 3syl6eq 2847 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = V)
54adantl 482 . . . . . . . . 9 (( 𝐴 = 𝐴𝐴 = ∅) → 𝐴 = V)
6 unieq 4753 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
7 uni0 4772 . . . . . . . . . . . 12 ∅ = ∅
86, 7syl6eq 2847 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
9 eqeq1 2799 . . . . . . . . . . 11 ( 𝐴 = 𝐴 → ( 𝐴 = ∅ ↔ 𝐴 = ∅))
108, 9syl5ib 245 . . . . . . . . . 10 ( 𝐴 = 𝐴 → (𝐴 = ∅ → 𝐴 = ∅))
1110imp 407 . . . . . . . . 9 (( 𝐴 = 𝐴𝐴 = ∅) → 𝐴 = ∅)
125, 11eqtr3d 2833 . . . . . . . 8 (( 𝐴 = 𝐴𝐴 = ∅) → V = ∅)
1312ex 413 . . . . . . 7 ( 𝐴 = 𝐴 → (𝐴 = ∅ → V = ∅))
1413necon3d 3005 . . . . . 6 ( 𝐴 = 𝐴 → (V ≠ ∅ → 𝐴 ≠ ∅))
151, 14mpi 20 . . . . 5 ( 𝐴 = 𝐴𝐴 ≠ ∅)
16 n0 4230 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
1715, 16sylib 219 . . . 4 ( 𝐴 = 𝐴 → ∃𝑥 𝑥𝐴)
18 vex 3440 . . . . . . 7 𝑥 ∈ V
19 vex 3440 . . . . . . 7 𝑦 ∈ V
2018, 19prss 4660 . . . . . 6 ((𝑥𝐴𝑦𝐴) ↔ {𝑥, 𝑦} ⊆ 𝐴)
21 uniss 4766 . . . . . . . . . . . 12 ({𝑥, 𝑦} ⊆ 𝐴 {𝑥, 𝑦} ⊆ 𝐴)
2221adantl 482 . . . . . . . . . . 11 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴)
23 simpl 483 . . . . . . . . . . 11 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → 𝐴 = 𝐴)
2422, 23sseqtrd 3928 . . . . . . . . . 10 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴)
25 intss 4803 . . . . . . . . . . 11 ({𝑥, 𝑦} ⊆ 𝐴 𝐴 {𝑥, 𝑦})
2625adantl 482 . . . . . . . . . 10 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → 𝐴 {𝑥, 𝑦})
2724, 26sstrd 3899 . . . . . . . . 9 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → {𝑥, 𝑦} ⊆ {𝑥, 𝑦})
2818, 19unipr 4758 . . . . . . . . 9 {𝑥, 𝑦} = (𝑥𝑦)
2918, 19intpr 4815 . . . . . . . . 9 {𝑥, 𝑦} = (𝑥𝑦)
3027, 28, 293sstr3g 3932 . . . . . . . 8 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → (𝑥𝑦) ⊆ (𝑥𝑦))
31 inss1 4125 . . . . . . . . 9 (𝑥𝑦) ⊆ 𝑥
32 ssun1 4069 . . . . . . . . 9 𝑥 ⊆ (𝑥𝑦)
3331, 32sstri 3898 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
34 eqss 3904 . . . . . . . . 9 ((𝑥𝑦) = (𝑥𝑦) ↔ ((𝑥𝑦) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)))
35 uneqin 4175 . . . . . . . . 9 ((𝑥𝑦) = (𝑥𝑦) ↔ 𝑥 = 𝑦)
3634, 35bitr3i 278 . . . . . . . 8 (((𝑥𝑦) ⊆ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) ↔ 𝑥 = 𝑦)
3730, 33, 36sylanblc 589 . . . . . . 7 (( 𝐴 = 𝐴 ∧ {𝑥, 𝑦} ⊆ 𝐴) → 𝑥 = 𝑦)
3837ex 413 . . . . . 6 ( 𝐴 = 𝐴 → ({𝑥, 𝑦} ⊆ 𝐴𝑥 = 𝑦))
3920, 38syl5bi 243 . . . . 5 ( 𝐴 = 𝐴 → ((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
4039alrimivv 1906 . . . 4 ( 𝐴 = 𝐴 → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
4117, 40jca 512 . . 3 ( 𝐴 = 𝐴 → (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
42 euabsn 4569 . . . 4 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥{𝑥𝑥𝐴} = {𝑥})
43 eleq1w 2865 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
4443eu4 2667 . . . 4 (∃!𝑥 𝑥𝐴 ↔ (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
45 abid2 2926 . . . . . 6 {𝑥𝑥𝐴} = 𝐴
4645eqeq1i 2800 . . . . 5 ({𝑥𝑥𝐴} = {𝑥} ↔ 𝐴 = {𝑥})
4746exbii 1829 . . . 4 (∃𝑥{𝑥𝑥𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})
4842, 44, 473bitr3i 302 . . 3 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) ↔ ∃𝑥 𝐴 = {𝑥})
4941, 48sylib 219 . 2 ( 𝐴 = 𝐴 → ∃𝑥 𝐴 = {𝑥})
5018unisn 4761 . . . 4 {𝑥} = 𝑥
51 unieq 4753 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
52 inteq 4785 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
5318intsn 4818 . . . . 5 {𝑥} = 𝑥
5452, 53syl6eq 2847 . . . 4 (𝐴 = {𝑥} → 𝐴 = 𝑥)
5550, 51, 543eqtr4a 2857 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝐴)
5655exlimiv 1908 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
5749, 56impbii 210 1 ( 𝐴 = 𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1520   = wceq 1522  wex 1761  wcel 2081  ∃!weu 2611  {cab 2775  wne 2984  Vcvv 3437  cun 3857  cin 3858  wss 3859  c0 4211  {csn 4472  {cpr 4474   cuni 4745   cint 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-sn 4473  df-pr 4475  df-uni 4746  df-int 4783
This theorem is referenced by:  uniintab  4820
  Copyright terms: Public domain W3C validator