![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intprgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of intprg 4985 as of 1-Sep-2024. (Contributed by FL, 27-Apr-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
intprgOLD | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4737 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
2 | 1 | inteqd 4955 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑥, 𝑦} = ∩ {𝐴, 𝑦}) |
3 | ineq1 4205 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
4 | 2, 3 | eqeq12d 2747 | . 2 ⊢ (𝑥 = 𝐴 → (∩ {𝑥, 𝑦} = (𝑥 ∩ 𝑦) ↔ ∩ {𝐴, 𝑦} = (𝐴 ∩ 𝑦))) |
5 | preq2 4738 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
6 | 5 | inteqd 4955 | . . 3 ⊢ (𝑦 = 𝐵 → ∩ {𝐴, 𝑦} = ∩ {𝐴, 𝐵}) |
7 | ineq2 4206 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
8 | 6, 7 | eqeq12d 2747 | . 2 ⊢ (𝑦 = 𝐵 → (∩ {𝐴, 𝑦} = (𝐴 ∩ 𝑦) ↔ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵))) |
9 | vex 3477 | . . 3 ⊢ 𝑥 ∈ V | |
10 | vex 3477 | . . 3 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | intpr 4986 | . 2 ⊢ ∩ {𝑥, 𝑦} = (𝑥 ∩ 𝑦) |
12 | 4, 8, 11 | vtocl2g 3563 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 {cpr 4630 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-un 3953 df-in 3955 df-sn 4629 df-pr 4631 df-int 4951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |