![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intprgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of intprg 4984 as of 1-Sep-2024. (Contributed by FL, 27-Apr-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
intprgOLD | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4736 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
2 | 1 | inteqd 4954 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑥, 𝑦} = ∩ {𝐴, 𝑦}) |
3 | ineq1 4204 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
4 | 2, 3 | eqeq12d 2748 | . 2 ⊢ (𝑥 = 𝐴 → (∩ {𝑥, 𝑦} = (𝑥 ∩ 𝑦) ↔ ∩ {𝐴, 𝑦} = (𝐴 ∩ 𝑦))) |
5 | preq2 4737 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
6 | 5 | inteqd 4954 | . . 3 ⊢ (𝑦 = 𝐵 → ∩ {𝐴, 𝑦} = ∩ {𝐴, 𝐵}) |
7 | ineq2 4205 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
8 | 6, 7 | eqeq12d 2748 | . 2 ⊢ (𝑦 = 𝐵 → (∩ {𝐴, 𝑦} = (𝐴 ∩ 𝑦) ↔ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵))) |
9 | vex 3478 | . . 3 ⊢ 𝑥 ∈ V | |
10 | vex 3478 | . . 3 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | intpr 4985 | . 2 ⊢ ∩ {𝑥, 𝑦} = (𝑥 ∩ 𝑦) |
12 | 4, 8, 11 | vtocl2g 3562 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 {cpr 4629 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-un 3952 df-in 3954 df-sn 4628 df-pr 4630 df-int 4950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |