Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | elexi 3451 | . . 3 ⊢ 𝐴 ∈ V |
3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | elexi 3451 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 4913 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 471 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
7 | 2, 4 | prss 4753 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
8 | 6, 7 | mpbi 229 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
9 | 2 | prnz 4713 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 471 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | shintcli 29691 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
12 | 5, 11 | eqeltrri 2836 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {cpr 4563 ∩ cint 4879 Sℋ csh 29290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29361 ax-hfvadd 29362 ax-hv0cl 29365 ax-hfvmul 29367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-sh 29569 |
This theorem is referenced by: shincl 29743 shmodsi 29751 shmodi 29752 5oalem1 30016 5oalem3 30018 5oalem5 30020 5oalem6 30021 5oai 30023 3oalem2 30025 3oalem6 30029 cdj3lem1 30796 |
Copyright terms: Public domain | W3C validator |