| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version | ||
| Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shincl.1 | ⊢ 𝐴 ∈ Sℋ |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 2 | 1 | elexi 3467 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 3 | elexi 3467 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4942 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
| 7 | 2, 4 | prss 4780 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
| 9 | 2 | prnz 4737 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | shintcli 31308 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
| 12 | 5, 11 | eqeltrri 2825 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {cpr 4587 ∩ cint 4906 Sℋ csh 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hilex 30978 ax-hfvadd 30979 ax-hv0cl 30982 ax-hfvmul 30984 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-sh 31186 |
| This theorem is referenced by: shincl 31360 shmodsi 31368 shmodi 31369 5oalem1 31633 5oalem3 31635 5oalem5 31637 5oalem6 31638 5oai 31640 3oalem2 31642 3oalem6 31646 cdj3lem1 32413 |
| Copyright terms: Public domain | W3C validator |