| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version | ||
| Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shincl.1 | ⊢ 𝐴 ∈ Sℋ |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 2 | 1 | elexi 3473 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 3 | elexi 3473 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4948 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
| 7 | 2, 4 | prss 4786 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
| 9 | 2 | prnz 4743 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | shintcli 31264 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
| 12 | 5, 11 | eqeltrri 2826 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 {cpr 4593 ∩ cint 4912 Sℋ csh 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-hilex 30934 ax-hfvadd 30935 ax-hv0cl 30938 ax-hfvmul 30940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-sh 31142 |
| This theorem is referenced by: shincl 31316 shmodsi 31324 shmodi 31325 5oalem1 31589 5oalem3 31591 5oalem5 31593 5oalem6 31594 5oai 31596 3oalem2 31598 3oalem6 31602 cdj3lem1 32369 |
| Copyright terms: Public domain | W3C validator |