| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version | ||
| Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shincl.1 | ⊢ 𝐴 ∈ Sℋ |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 2 | 1 | elexi 3459 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 3 | elexi 3459 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4930 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
| 7 | 2, 4 | prss 4769 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
| 9 | 2 | prnz 4727 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | shintcli 31309 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
| 12 | 5, 11 | eqeltrri 2828 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 {cpr 4575 ∩ cint 4895 Sℋ csh 30908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hilex 30979 ax-hfvadd 30980 ax-hv0cl 30983 ax-hfvmul 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-sh 31187 |
| This theorem is referenced by: shincl 31361 shmodsi 31369 shmodi 31370 5oalem1 31634 5oalem3 31636 5oalem5 31638 5oalem6 31639 5oai 31641 3oalem2 31643 3oalem6 31647 cdj3lem1 32414 |
| Copyright terms: Public domain | W3C validator |