HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shincli Structured version   Visualization version   GIF version

Theorem shincli 29724
Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
Assertion
Ref Expression
shincli (𝐴𝐵) ∈ S

Proof of Theorem shincli
StepHypRef Expression
1 shincl.1 . . . 4 𝐴S
21elexi 3451 . . 3 𝐴 ∈ V
3 shincl.2 . . . 4 𝐵S
43elexi 3451 . . 3 𝐵 ∈ V
52, 4intpr 4913 . 2 {𝐴, 𝐵} = (𝐴𝐵)
61, 3pm3.2i 471 . . . . 5 (𝐴S𝐵S )
72, 4prss 4753 . . . . 5 ((𝐴S𝐵S ) ↔ {𝐴, 𝐵} ⊆ S )
86, 7mpbi 229 . . . 4 {𝐴, 𝐵} ⊆ S
92prnz 4713 . . . 4 {𝐴, 𝐵} ≠ ∅
108, 9pm3.2i 471 . . 3 ({𝐴, 𝐵} ⊆ S ∧ {𝐴, 𝐵} ≠ ∅)
1110shintcli 29691 . 2 {𝐴, 𝐵} ∈ S
125, 11eqeltrri 2836 1 (𝐴𝐵) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256  {cpr 4563   cint 4879   S csh 29290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-hilex 29361  ax-hfvadd 29362  ax-hv0cl 29365  ax-hfvmul 29367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-sh 29569
This theorem is referenced by:  shincl  29743  shmodsi  29751  shmodi  29752  5oalem1  30016  5oalem3  30018  5oalem5  30020  5oalem6  30021  5oai  30023  3oalem2  30025  3oalem6  30029  cdj3lem1  30796
  Copyright terms: Public domain W3C validator