| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version | ||
| Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shincl.1 | ⊢ 𝐴 ∈ Sℋ |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 2 | 1 | elexi 3487 | . . 3 ⊢ 𝐴 ∈ V |
| 3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 3 | elexi 3487 | . . 3 ⊢ 𝐵 ∈ V |
| 5 | 2, 4 | intpr 4964 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
| 6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
| 7 | 2, 4 | prss 4802 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
| 9 | 2 | prnz 4759 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
| 11 | 10 | shintcli 31295 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
| 12 | 5, 11 | eqeltrri 2830 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 {cpr 4610 ∩ cint 4928 Sℋ csh 30894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-hilex 30965 ax-hfvadd 30966 ax-hv0cl 30969 ax-hfvmul 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-sh 31173 |
| This theorem is referenced by: shincl 31347 shmodsi 31355 shmodi 31356 5oalem1 31620 5oalem3 31622 5oalem5 31624 5oalem6 31625 5oai 31627 3oalem2 31629 3oalem6 31633 cdj3lem1 32400 |
| Copyright terms: Public domain | W3C validator |