![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | elexi 3501 | . . 3 ⊢ 𝐴 ∈ V |
3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | elexi 3501 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 4987 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
7 | 2, 4 | prss 4825 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
8 | 6, 7 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
9 | 2 | prnz 4782 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | shintcli 31358 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
12 | 5, 11 | eqeltrri 2836 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {cpr 4633 ∩ cint 4951 Sℋ csh 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-hilex 31028 ax-hfvadd 31029 ax-hv0cl 31032 ax-hfvmul 31034 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-sh 31236 |
This theorem is referenced by: shincl 31410 shmodsi 31418 shmodi 31419 5oalem1 31683 5oalem3 31685 5oalem5 31687 5oalem6 31688 5oai 31690 3oalem2 31692 3oalem6 31696 cdj3lem1 32463 |
Copyright terms: Public domain | W3C validator |