HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shincli Structured version   Visualization version   GIF version

Theorem shincli 31119
Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
Assertion
Ref Expression
shincli (𝐴𝐵) ∈ S

Proof of Theorem shincli
StepHypRef Expression
1 shincl.1 . . . 4 𝐴S
21elexi 3488 . . 3 𝐴 ∈ V
3 shincl.2 . . . 4 𝐵S
43elexi 3488 . . 3 𝐵 ∈ V
52, 4intpr 4979 . 2 {𝐴, 𝐵} = (𝐴𝐵)
61, 3pm3.2i 470 . . . . 5 (𝐴S𝐵S )
72, 4prss 4818 . . . . 5 ((𝐴S𝐵S ) ↔ {𝐴, 𝐵} ⊆ S )
86, 7mpbi 229 . . . 4 {𝐴, 𝐵} ⊆ S
92prnz 4776 . . . 4 {𝐴, 𝐵} ≠ ∅
108, 9pm3.2i 470 . . 3 ({𝐴, 𝐵} ⊆ S ∧ {𝐴, 𝐵} ≠ ∅)
1110shintcli 31086 . 2 {𝐴, 𝐵} ∈ S
125, 11eqeltrri 2824 1 (𝐴𝐵) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2098  wne 2934  cin 3942  wss 3943  c0 4317  {cpr 4625   cint 4943   S csh 30685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-hilex 30756  ax-hfvadd 30757  ax-hv0cl 30760  ax-hfvmul 30762
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7407  df-sh 30964
This theorem is referenced by:  shincl  31138  shmodsi  31146  shmodi  31147  5oalem1  31411  5oalem3  31413  5oalem5  31415  5oalem6  31416  5oai  31418  3oalem2  31420  3oalem6  31424  cdj3lem1  32191
  Copyright terms: Public domain W3C validator