Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | elexi 3441 | . . 3 ⊢ 𝐴 ∈ V |
3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | elexi 3441 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 4910 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
7 | 2, 4 | prss 4750 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
8 | 6, 7 | mpbi 229 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
9 | 2 | prnz 4710 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | shintcli 29592 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
12 | 5, 11 | eqeltrri 2836 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {cpr 4560 ∩ cint 4876 Sℋ csh 29191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hilex 29262 ax-hfvadd 29263 ax-hv0cl 29266 ax-hfvmul 29268 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-sh 29470 |
This theorem is referenced by: shincl 29644 shmodsi 29652 shmodi 29653 5oalem1 29917 5oalem3 29919 5oalem5 29921 5oalem6 29922 5oai 29924 3oalem2 29926 3oalem6 29930 cdj3lem1 30697 |
Copyright terms: Public domain | W3C validator |