![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shincli | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shincli | ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | elexi 3401 | . . 3 ⊢ 𝐴 ∈ V |
3 | shincl.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | elexi 3401 | . . 3 ⊢ 𝐵 ∈ V |
5 | 2, 4 | intpr 4700 | . 2 ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) |
6 | 1, 3 | pm3.2i 463 | . . . . 5 ⊢ (𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
7 | 2, 4 | prss 4539 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ {𝐴, 𝐵} ⊆ Sℋ ) |
8 | 6, 7 | mpbi 222 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ Sℋ |
9 | 2 | prnz 4498 | . . . 4 ⊢ {𝐴, 𝐵} ≠ ∅ |
10 | 8, 9 | pm3.2i 463 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ Sℋ ∧ {𝐴, 𝐵} ≠ ∅) |
11 | 10 | shintcli 28713 | . 2 ⊢ ∩ {𝐴, 𝐵} ∈ Sℋ |
12 | 5, 11 | eqeltrri 2875 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∈ wcel 2157 ≠ wne 2971 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 {cpr 4370 ∩ cint 4667 Sℋ csh 28310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-hilex 28381 ax-hfvadd 28382 ax-hv0cl 28385 ax-hfvmul 28387 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-sh 28589 |
This theorem is referenced by: shincl 28765 shmodsi 28773 shmodi 28774 5oalem1 29038 5oalem3 29040 5oalem5 29042 5oalem6 29043 5oai 29045 3oalem2 29047 3oalem6 29051 cdj3lem1 29818 |
Copyright terms: Public domain | W3C validator |