![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmressn | Structured version Visualization version GIF version |
Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
Ref | Expression |
---|---|
eldmressn | ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . 3 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) ↔ (𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹)) | |
2 | elsni 4644 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹) → 𝐵 = 𝐴) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) → 𝐵 = 𝐴) |
5 | dmres 6001 | . 2 ⊢ dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹) | |
6 | 4, 5 | eleq2s 2851 | 1 ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 {csn 4627 dom cdm 5675 ↾ cres 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-dm 5685 df-res 5687 |
This theorem is referenced by: dfdfat2 45822 |
Copyright terms: Public domain | W3C validator |