| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmressn | Structured version Visualization version GIF version | ||
| Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| eldmressn | ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . . 3 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) ↔ (𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹)) | |
| 2 | elsni 4592 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹) → 𝐵 = 𝐴) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) → 𝐵 = 𝐴) |
| 5 | dmres 5965 | . 2 ⊢ dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹) | |
| 6 | 4, 5 | eleq2s 2851 | 1 ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 {csn 4575 dom cdm 5619 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-res 5631 |
| This theorem is referenced by: dfdfat2 47252 |
| Copyright terms: Public domain | W3C validator |