Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmressn Structured version   Visualization version   GIF version

Theorem eldmressn 44070
Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
eldmressn (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴)

Proof of Theorem eldmressn
StepHypRef Expression
1 elin 3859 . . 3 (𝐵 ∈ ({𝐴} ∩ dom 𝐹) ↔ (𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹))
2 elsni 4533 . . . 4 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
32adantr 484 . . 3 ((𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹) → 𝐵 = 𝐴)
41, 3sylbi 220 . 2 (𝐵 ∈ ({𝐴} ∩ dom 𝐹) → 𝐵 = 𝐴)
5 dmres 5847 . 2 dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹)
64, 5eleq2s 2851 1 (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cin 3842  {csn 4516  dom cdm 5525  cres 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-xp 5531  df-dm 5535  df-res 5537
This theorem is referenced by:  dfdfat2  44153
  Copyright terms: Public domain W3C validator