Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmressn | Structured version Visualization version GIF version |
Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
Ref | Expression |
---|---|
eldmressn | ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3907 | . . 3 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) ↔ (𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹)) | |
2 | elsni 4583 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹) → 𝐵 = 𝐴) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) → 𝐵 = 𝐴) |
5 | dmres 5910 | . 2 ⊢ dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹) | |
6 | 4, 5 | eleq2s 2858 | 1 ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 {csn 4566 dom cdm 5588 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-dm 5598 df-res 5600 |
This theorem is referenced by: dfdfat2 44571 |
Copyright terms: Public domain | W3C validator |