Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmressn | Structured version Visualization version GIF version |
Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
Ref | Expression |
---|---|
eldmressn | ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3859 | . . 3 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) ↔ (𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹)) | |
2 | elsni 4533 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
3 | 2 | adantr 484 | . . 3 ⊢ ((𝐵 ∈ {𝐴} ∧ 𝐵 ∈ dom 𝐹) → 𝐵 = 𝐴) |
4 | 1, 3 | sylbi 220 | . 2 ⊢ (𝐵 ∈ ({𝐴} ∩ dom 𝐹) → 𝐵 = 𝐴) |
5 | dmres 5847 | . 2 ⊢ dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹) | |
6 | 4, 5 | eleq2s 2851 | 1 ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3842 {csn 4516 dom cdm 5525 ↾ cres 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-dm 5535 df-res 5537 |
This theorem is referenced by: dfdfat2 44153 |
Copyright terms: Public domain | W3C validator |