Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iota5 | Structured version Visualization version GIF version |
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
Ref | Expression |
---|---|
iota5.1 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) |
Ref | Expression |
---|---|
iota5 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota5.1 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ∀𝑥(𝜓 ↔ 𝑥 = 𝐴)) |
3 | eqeq2 2750 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
4 | 3 | bibi2d 343 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜓 ↔ 𝑥 = 𝐴))) |
5 | 4 | albidv 1923 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜓 ↔ 𝑥 = 𝐴))) |
6 | eqeq2 2750 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((℩𝑥𝜓) = 𝑦 ↔ (℩𝑥𝜓) = 𝐴)) | |
7 | 5, 6 | imbi12d 345 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∀𝑥(𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) ↔ (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))) |
8 | iotaval 6407 | . . . 4 ⊢ (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) | |
9 | 7, 8 | vtoclg 3505 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)) |
10 | 9 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)) |
11 | 2, 10 | mpd 15 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 |
This theorem is referenced by: isf32lem9 10117 rlimdm 15260 fsum 15432 fprod 15651 gsumval2a 18369 dchrptlem1 26412 lgsdchrval 26502 iota0def 44532 rlimdmafv 44669 rlimdmafv2 44750 |
Copyright terms: Public domain | W3C validator |