MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota5 Structured version   Visualization version   GIF version

Theorem iota5 6479
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.)
Hypothesis
Ref Expression
iota5.1 ((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))
Assertion
Ref Expression
iota5 ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem iota5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iota5.1 . . 3 ((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))
21alrimiv 1930 . 2 ((𝜑𝐴𝑉) → ∀𝑥(𝜓𝑥 = 𝐴))
3 eqeq2 2748 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
43bibi2d 342 . . . . . 6 (𝑦 = 𝐴 → ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑥 = 𝐴)))
54albidv 1923 . . . . 5 (𝑦 = 𝐴 → (∀𝑥(𝜓𝑥 = 𝑦) ↔ ∀𝑥(𝜓𝑥 = 𝐴)))
6 eqeq2 2748 . . . . 5 (𝑦 = 𝐴 → ((℩𝑥𝜓) = 𝑦 ↔ (℩𝑥𝜓) = 𝐴))
75, 6imbi12d 344 . . . 4 (𝑦 = 𝐴 → ((∀𝑥(𝜓𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) ↔ (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)))
8 iotaval 6467 . . . 4 (∀𝑥(𝜓𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦)
97, 8vtoclg 3525 . . 3 (𝐴𝑉 → (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))
109adantl 482 . 2 ((𝜑𝐴𝑉) → (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))
112, 10mpd 15 1 ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  cio 6446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3447  df-un 3915  df-in 3917  df-ss 3927  df-sn 4587  df-pr 4589  df-uni 4866  df-iota 6448
This theorem is referenced by:  isf32lem9  10297  rlimdm  15433  fsum  15605  fprod  15824  gsumval2a  18540  dchrptlem1  26612  lgsdchrval  26702  iota0def  45262  rlimdmafv  45399  rlimdmafv2  45480
  Copyright terms: Public domain W3C validator