![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iota5 | Structured version Visualization version GIF version |
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
Ref | Expression |
---|---|
iota5.1 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) |
Ref | Expression |
---|---|
iota5 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota5.1 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) | |
2 | 1 | alrimiv 1909 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ∀𝑥(𝜓 ↔ 𝑥 = 𝐴)) |
3 | eqeq2 2808 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
4 | 3 | bibi2d 344 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜓 ↔ 𝑥 = 𝐴))) |
5 | 4 | albidv 1902 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜓 ↔ 𝑥 = 𝐴))) |
6 | eqeq2 2808 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((℩𝑥𝜓) = 𝑦 ↔ (℩𝑥𝜓) = 𝐴)) | |
7 | 5, 6 | imbi12d 346 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∀𝑥(𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) ↔ (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))) |
8 | iotaval 6207 | . . . 4 ⊢ (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) | |
9 | 7, 8 | vtoclg 3513 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)) |
10 | 9 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)) |
11 | 2, 10 | mpd 15 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1523 = wceq 1525 ∈ wcel 2083 ℩cio 6194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rex 3113 df-v 3442 df-sbc 3712 df-un 3870 df-sn 4479 df-pr 4481 df-uni 4752 df-iota 6196 |
This theorem is referenced by: isf32lem9 9636 rlimdm 14746 fsum 14914 fprod 15132 gsumval2a 17722 dchrptlem1 25526 lgsdchrval 25616 iota0def 42811 rlimdmafv 42914 rlimdmafv2 42995 |
Copyright terms: Public domain | W3C validator |