| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota5 | Structured version Visualization version GIF version | ||
| Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| iota5.1 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) |
| Ref | Expression |
|---|---|
| iota5 | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota5.1 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ∀𝑥(𝜓 ↔ 𝑥 = 𝐴)) |
| 3 | eqeq2 2748 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
| 4 | 3 | bibi2d 342 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜓 ↔ 𝑥 = 𝐴))) |
| 5 | 4 | albidv 1920 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜓 ↔ 𝑥 = 𝐴))) |
| 6 | eqeq2 2748 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((℩𝑥𝜓) = 𝑦 ↔ (℩𝑥𝜓) = 𝐴)) | |
| 7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∀𝑥(𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) ↔ (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))) |
| 8 | iotaval 6507 | . . . 4 ⊢ (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) | |
| 9 | 7, 8 | vtoclg 3538 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝜓 ↔ 𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)) |
| 11 | 2, 10 | mpd 15 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: isf32lem9 10380 rlimdm 15572 fsum 15741 fprod 15962 gsumval2a 18668 dchrptlem1 27232 lgsdchrval 27322 iota0def 47034 rlimdmafv 47173 rlimdmafv2 47254 |
| Copyright terms: Public domain | W3C validator |