![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusgredg | Structured version Visualization version GIF version |
Description: A simple graph is complete iff all vertices are connected by an edge. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
iscusgredg.v | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
iscusgredg | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 29458 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | iscusgrvtx.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | iscplgrnb 29456 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})𝑛 ∈ (𝐺 NeighbVtx 𝑘))) |
4 | iscusgredg.v | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | 4 | nbusgreledg 29393 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑘) ↔ {𝑛, 𝑘} ∈ 𝐸)) |
6 | 5 | 2ralbidv 3220 | . . . 4 ⊢ (𝐺 ∈ USGraph → (∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘})𝑛 ∈ (𝐺 NeighbVtx 𝑘) ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) |
7 | 3, 6 | bitrd 279 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) |
8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) |
9 | 1, 8 | bitri 275 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ∖ cdif 3961 {csn 4632 {cpr 4634 ‘cfv 6566 (class class class)co 7435 Vtxcvtx 29036 Edgcedg 29087 USGraphcusgr 29189 NeighbVtx cnbgr 29372 ComplGraphccplgr 29449 ComplUSGraphccusgr 29450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-oadd 8515 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-dju 9945 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-n0 12531 df-xnn0 12604 df-z 12618 df-uz 12883 df-fz 13551 df-hash 14373 df-edg 29088 df-upgr 29122 df-umgr 29123 df-usgr 29191 df-nbgr 29373 df-uvtx 29426 df-cplgr 29451 df-cusgr 29452 |
This theorem is referenced by: cusgredg 29464 usgredgsscusgredg 29500 |
Copyright terms: Public domain | W3C validator |