Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgruvtxb | Structured version Visualization version GIF version |
Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cusgruvtxb | ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 27785 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | ibar 529 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))) | |
3 | iscusgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | cplgruvtxb 27780 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
5 | 2, 4 | bitr3d 280 | . 2 ⊢ (𝐺 ∈ USGraph → ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (UnivVtx‘𝐺) = 𝑉)) |
6 | 1, 5 | bitrid 282 | 1 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Vtxcvtx 27366 USGraphcusgr 27519 UnivVtxcuvtx 27752 ComplGraphccplgr 27776 ComplUSGraphccusgr 27777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-cplgr 27778 df-cusgr 27779 |
This theorem is referenced by: vdiscusgrb 27897 vdiscusgr 27898 |
Copyright terms: Public domain | W3C validator |