| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgruvtxb | Structured version Visualization version GIF version | ||
| Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| iscusgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgruvtxb | ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusgr 29345 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 2 | ibar 528 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))) | |
| 3 | iscusgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | cplgruvtxb 29340 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 5 | 2, 4 | bitr3d 281 | . 2 ⊢ (𝐺 ∈ USGraph → ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 6 | 1, 5 | bitrid 283 | 1 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Vtxcvtx 28923 USGraphcusgr 29076 UnivVtxcuvtx 29312 ComplGraphccplgr 29336 ComplUSGraphccusgr 29337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-cplgr 29338 df-cusgr 29339 |
| This theorem is referenced by: vdiscusgrb 29458 vdiscusgr 29459 |
| Copyright terms: Public domain | W3C validator |