MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgruvtxb Structured version   Visualization version   GIF version

Theorem cusgruvtxb 29421
Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgruvtxb (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉))

Proof of Theorem cusgruvtxb
StepHypRef Expression
1 iscusgr 29417 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
2 ibar 528 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)))
3 iscusgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
43cplgruvtxb 29412 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
52, 4bitr3d 281 . 2 (𝐺 ∈ USGraph → ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (UnivVtx‘𝐺) = 𝑉))
61, 5bitrid 283 1 (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6489  Vtxcvtx 28995  USGraphcusgr 29148  UnivVtxcuvtx 29384  ComplGraphccplgr 29408  ComplUSGraphccusgr 29409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-cplgr 29410  df-cusgr 29411
This theorem is referenced by:  vdiscusgrb  29530  vdiscusgr  29531
  Copyright terms: Public domain W3C validator