Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgruvtxb | Structured version Visualization version GIF version |
Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cusgruvtxb | ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 27688 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | ibar 528 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))) | |
3 | iscusgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | cplgruvtxb 27683 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
5 | 2, 4 | bitr3d 280 | . 2 ⊢ (𝐺 ∈ USGraph → ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (UnivVtx‘𝐺) = 𝑉)) |
6 | 1, 5 | syl5bb 282 | 1 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Vtxcvtx 27269 USGraphcusgr 27422 UnivVtxcuvtx 27655 ComplGraphccplgr 27679 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-cplgr 27681 df-cusgr 27682 |
This theorem is referenced by: vdiscusgrb 27800 vdiscusgr 27801 |
Copyright terms: Public domain | W3C validator |