MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexi Structured version   Visualization version   GIF version

Theorem cusgrexi 29406
Description: An arbitrary set 𝑉 regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexi (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplUSGraph)
Distinct variable groups:   𝑥,𝑉   𝑥,𝑃   𝑥,𝑊

Proof of Theorem cusgrexi
Dummy variables 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexi.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21usgrexi 29404 . 2 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph)
31cusgrexilem1 29402 . . . . . . . . 9 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
4 opvtxfv 28967 . . . . . . . . . 10 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
54eqcomd 2735 . . . . . . . . 9 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → 𝑉 = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
63, 5mpdan 687 . . . . . . . 8 (𝑉𝑊𝑉 = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
76eleq2d 2814 . . . . . . 7 (𝑉𝑊 → (𝑣𝑉𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
87biimpa 476 . . . . . 6 ((𝑉𝑊𝑣𝑉) → 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
9 eldifi 4084 . . . . . . . . . . . 12 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑉)
109adantl 481 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛𝑉)
113, 4mpdan 687 . . . . . . . . . . . . 13 (𝑉𝑊 → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
1211eleq2d 2814 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑛𝑉))
1312ad2antrr 726 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑛𝑉))
1410, 13mpbird 257 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
15 simplr 768 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣𝑉)
1611eleq2d 2814 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑣𝑉))
1716ad2antrr 726 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑣𝑉))
1815, 17mpbird 257 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
1914, 18jca 511 . . . . . . . . 9 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∧ 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
20 eldifsni 4744 . . . . . . . . . 10 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑣)
2120adantl 481 . . . . . . . . 9 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛𝑣)
221cusgrexilem2 29405 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
23 edgval 29012 . . . . . . . . . . . . 13 (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ran (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)
24 opiedgfv 28970 . . . . . . . . . . . . . . 15 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
253, 24mpdan 687 . . . . . . . . . . . . . 14 (𝑉𝑊 → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
2625rneqd 5884 . . . . . . . . . . . . 13 (𝑉𝑊 → ran (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ran ( I ↾ 𝑃))
2723, 26eqtrid 2776 . . . . . . . . . . . 12 (𝑉𝑊 → (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ran ( I ↾ 𝑃))
2827rexeqdv 3291 . . . . . . . . . . 11 (𝑉𝑊 → (∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
2928ad2antrr 726 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3022, 29mpbird 257 . . . . . . . . 9 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒)
31 eqid 2729 . . . . . . . . . 10 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)
32 eqid 2729 . . . . . . . . . 10 (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩) = (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩)
3331, 32nbgrel 29303 . . . . . . . . 9 (𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣) ↔ ((𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∧ 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)) ∧ 𝑛𝑣 ∧ ∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒))
3419, 21, 30, 33syl3anbrc 1344 . . . . . . . 8 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣))
3534ralrimiva 3121 . . . . . . 7 ((𝑉𝑊𝑣𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣))
3611adantr 480 . . . . . . . 8 ((𝑉𝑊𝑣𝑉) → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
3736difeq1d 4078 . . . . . . 7 ((𝑉𝑊𝑣𝑉) → ((Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∖ {𝑣}) = (𝑉 ∖ {𝑣}))
3835, 37raleqtrrdv 3294 . . . . . 6 ((𝑉𝑊𝑣𝑉) → ∀𝑛 ∈ ((Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣))
3931uvtxel 29351 . . . . . 6 (𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ (𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∧ ∀𝑛 ∈ ((Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣)))
408, 38, 39sylanbrc 583 . . . . 5 ((𝑉𝑊𝑣𝑉) → 𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
4140ralrimiva 3121 . . . 4 (𝑉𝑊 → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
4241, 11raleqtrrdv 3294 . . 3 (𝑉𝑊 → ∀𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
43 opex 5411 . . . 4 𝑉, ( I ↾ 𝑃)⟩ ∈ V
4431iscplgr 29378 . . . 4 (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
4543, 44mp1i 13 . . 3 (𝑉𝑊 → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
4642, 45mpbird 257 . 2 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph)
47 iscusgr 29381 . 2 (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplUSGraph ↔ (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph ∧ ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph))
482, 46, 47sylanbrc 583 1 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  wss 3905  𝒫 cpw 4553  {csn 4579  {cpr 4581  cop 4585   I cid 5517  ran crn 5624  cres 5625  cfv 6486  (class class class)co 7353  2c2 12201  chash 14255  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010  USGraphcusgr 29112   NeighbVtx cnbgr 29295  UnivVtxcuvtx 29348  ComplGraphccplgr 29372  ComplUSGraphccusgr 29373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-vtx 28961  df-iedg 28962  df-edg 29011  df-usgr 29114  df-nbgr 29296  df-uvtx 29349  df-cplgr 29374  df-cusgr 29375
This theorem is referenced by:  cusgrexg  29407
  Copyright terms: Public domain W3C validator