MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexi Structured version   Visualization version   GIF version

Theorem cusgrexi 27337
Description: An arbitrary set 𝑉 regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexi (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplUSGraph)
Distinct variable groups:   𝑥,𝑉   𝑥,𝑃   𝑥,𝑊

Proof of Theorem cusgrexi
Dummy variables 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexi.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21usgrexi 27335 . 2 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph)
31cusgrexilem1 27333 . . . . . . . . 9 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
4 opvtxfv 26901 . . . . . . . . . 10 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
54eqcomd 2764 . . . . . . . . 9 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → 𝑉 = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
63, 5mpdan 686 . . . . . . . 8 (𝑉𝑊𝑉 = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
76eleq2d 2837 . . . . . . 7 (𝑉𝑊 → (𝑣𝑉𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
87biimpa 480 . . . . . 6 ((𝑉𝑊𝑣𝑉) → 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
9 eldifi 4034 . . . . . . . . . . . 12 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑉)
109adantl 485 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛𝑉)
113, 4mpdan 686 . . . . . . . . . . . . 13 (𝑉𝑊 → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
1211eleq2d 2837 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑛𝑉))
1312ad2antrr 725 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑛𝑉))
1410, 13mpbird 260 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
15 simplr 768 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣𝑉)
1611eleq2d 2837 . . . . . . . . . . . 12 (𝑉𝑊 → (𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑣𝑉))
1716ad2antrr 725 . . . . . . . . . . 11 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ 𝑣𝑉))
1815, 17mpbird 260 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
1914, 18jca 515 . . . . . . . . 9 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∧ 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
20 eldifsni 4683 . . . . . . . . . 10 (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛𝑣)
2120adantl 485 . . . . . . . . 9 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛𝑣)
221cusgrexilem2 27336 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
23 edgval 26946 . . . . . . . . . . . . 13 (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ran (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)
24 opiedgfv 26904 . . . . . . . . . . . . . . 15 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
253, 24mpdan 686 . . . . . . . . . . . . . 14 (𝑉𝑊 → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
2625rneqd 5783 . . . . . . . . . . . . 13 (𝑉𝑊 → ran (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ran ( I ↾ 𝑃))
2723, 26syl5eq 2805 . . . . . . . . . . . 12 (𝑉𝑊 → (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ran ( I ↾ 𝑃))
2827rexeqdv 3330 . . . . . . . . . . 11 (𝑉𝑊 → (∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
2928ad2antrr 725 . . . . . . . . . 10 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3022, 29mpbird 260 . . . . . . . . 9 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒)
31 eqid 2758 . . . . . . . . . 10 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)
32 eqid 2758 . . . . . . . . . 10 (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩) = (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩)
3331, 32nbgrel 27234 . . . . . . . . 9 (𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣) ↔ ((𝑛 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∧ 𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)) ∧ 𝑛𝑣 ∧ ∃𝑒 ∈ (Edg‘⟨𝑉, ( I ↾ 𝑃)⟩){𝑣, 𝑛} ⊆ 𝑒))
3419, 21, 30, 33syl3anbrc 1340 . . . . . . . 8 (((𝑉𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣))
3534ralrimiva 3113 . . . . . . 7 ((𝑉𝑊𝑣𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣))
3611adantr 484 . . . . . . . . 9 ((𝑉𝑊𝑣𝑉) → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
3736difeq1d 4029 . . . . . . . 8 ((𝑉𝑊𝑣𝑉) → ((Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∖ {𝑣}) = (𝑉 ∖ {𝑣}))
3837raleqdv 3329 . . . . . . 7 ((𝑉𝑊𝑣𝑉) → (∀𝑛 ∈ ((Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣)))
3935, 38mpbird 260 . . . . . 6 ((𝑉𝑊𝑣𝑉) → ∀𝑛 ∈ ((Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣))
4031uvtxel 27282 . . . . . 6 (𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ (𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∧ ∀𝑛 ∈ ((Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∖ {𝑣})𝑛 ∈ (⟨𝑉, ( I ↾ 𝑃)⟩ NeighbVtx 𝑣)))
418, 39, 40sylanbrc 586 . . . . 5 ((𝑉𝑊𝑣𝑉) → 𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
4241ralrimiva 3113 . . . 4 (𝑉𝑊 → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
4311raleqdv 3329 . . . 4 (𝑉𝑊 → (∀𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
4442, 43mpbird 260 . . 3 (𝑉𝑊 → ∀𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩))
45 opex 5327 . . . 4 𝑉, ( I ↾ 𝑃)⟩ ∈ V
4631iscplgr 27309 . . . 4 (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
4745, 46mp1i 13 . . 3 (𝑉𝑊 → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)𝑣 ∈ (UnivVtx‘⟨𝑉, ( I ↾ 𝑃)⟩)))
4844, 47mpbird 260 . 2 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph)
49 iscusgr 27312 . 2 (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplUSGraph ↔ (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph ∧ ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplGraph))
502, 48, 49sylanbrc 586 1 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  cdif 3857  wss 3860  𝒫 cpw 4497  {csn 4525  {cpr 4527  cop 4531   I cid 5432  ran crn 5528  cres 5529  cfv 6339  (class class class)co 7155  2c2 11734  chash 13745  Vtxcvtx 26893  iEdgciedg 26894  Edgcedg 26944  USGraphcusgr 27046   NeighbVtx cnbgr 27226  UnivVtxcuvtx 27279  ComplGraphccplgr 27303  ComplUSGraphccusgr 27304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-oadd 8121  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-dju 9368  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-hash 13746  df-vtx 26895  df-iedg 26896  df-edg 26945  df-usgr 27048  df-nbgr 27227  df-uvtx 27280  df-cplgr 27305  df-cusgr 27306
This theorem is referenced by:  cusgrexg  27338
  Copyright terms: Public domain W3C validator