![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscplgredg | Structured version Visualization version GIF version |
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
iscplgredg.v | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
iscplgredg | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | iscplgrnb 28663 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
3 | df-3an 1090 | . . . . . 6 ⊢ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
5 | iscplgredg.v | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 5 | nbgrel 28587 | . . . . . 6 ⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
8 | eldifsn 4790 | . . . . . . 7 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) | |
9 | simpr 486 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
10 | simpl 484 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣) → 𝑛 ∈ 𝑉) | |
11 | 9, 10 | anim12ci 615 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → (𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
12 | simprr 772 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → 𝑛 ≠ 𝑣) | |
13 | 11, 12 | jca 513 | . . . . . . 7 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
14 | 8, 13 | sylan2b 595 | . . . . . 6 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
15 | 14 | biantrurd 534 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
16 | 4, 7, 15 | 3bitr4d 311 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
17 | 16 | ralbidva 3176 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
18 | 17 | ralbidva 3176 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
19 | 2, 18 | bitrd 279 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 {cpr 4630 ‘cfv 6541 (class class class)co 7406 Vtxcvtx 28246 Edgcedg 28297 NeighbVtx cnbgr 28579 ComplGraphccplgr 28656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-nbgr 28580 df-uvtx 28633 df-cplgr 28658 |
This theorem is referenced by: cplgrop 28684 cusconngr 29434 cplgredgex 34100 |
Copyright terms: Public domain | W3C validator |