MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgredg Structured version   Visualization version   GIF version

Theorem iscplgredg 27201
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
iscplgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iscplgredg (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑛,𝐺,𝑣   𝑛,𝑉   𝑣,𝑊   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉   𝑒,𝑊,𝑛,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑛)

Proof of Theorem iscplgredg
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21iscplgrnb 27200 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
3 df-3an 1085 . . . . . 6 (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
43a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
5 iscplgredg.v . . . . . . 7 𝐸 = (Edg‘𝐺)
61, 5nbgrel 27124 . . . . . 6 (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
76a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
8 eldifsn 4721 . . . . . . 7 (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛𝑉𝑛𝑣))
9 simpr 487 . . . . . . . . 9 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
10 simpl 485 . . . . . . . . 9 ((𝑛𝑉𝑛𝑣) → 𝑛𝑉)
119, 10anim12ci 615 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → (𝑛𝑉𝑣𝑉))
12 simprr 771 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → 𝑛𝑣)
1311, 12jca 514 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
148, 13sylan2b 595 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
1514biantrurd 535 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
164, 7, 153bitr4d 313 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1716ralbidva 3198 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1817ralbidva 3198 . 2 (𝐺𝑊 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
192, 18bitrd 281 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  cdif 3935  wss 3938  {csn 4569  {cpr 4571  cfv 6357  (class class class)co 7158  Vtxcvtx 26783  Edgcedg 26834   NeighbVtx cnbgr 27116  ComplGraphccplgr 27193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-nbgr 27117  df-uvtx 27170  df-cplgr 27195
This theorem is referenced by:  cplgrop  27221  cusconngr  27972  cplgredgex  32369
  Copyright terms: Public domain W3C validator