MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgredg Structured version   Visualization version   GIF version

Theorem iscplgredg 29449
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
iscplgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iscplgredg (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑛,𝐺,𝑣   𝑛,𝑉   𝑣,𝑊   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉   𝑒,𝑊,𝑛,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑛)

Proof of Theorem iscplgredg
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21iscplgrnb 29448 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
3 df-3an 1088 . . . . . 6 (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
43a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
5 iscplgredg.v . . . . . . 7 𝐸 = (Edg‘𝐺)
61, 5nbgrel 29372 . . . . . 6 (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
76a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
8 eldifsn 4791 . . . . . . 7 (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛𝑉𝑛𝑣))
9 simpr 484 . . . . . . . . 9 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
10 simpl 482 . . . . . . . . 9 ((𝑛𝑉𝑛𝑣) → 𝑛𝑉)
119, 10anim12ci 614 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → (𝑛𝑉𝑣𝑉))
12 simprr 773 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → 𝑛𝑣)
1311, 12jca 511 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
148, 13sylan2b 594 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
1514biantrurd 532 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
164, 7, 153bitr4d 311 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1716ralbidva 3174 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1817ralbidva 3174 . 2 (𝐺𝑊 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
192, 18bitrd 279 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cdif 3960  wss 3963  {csn 4631  {cpr 4633  cfv 6563  (class class class)co 7431  Vtxcvtx 29028  Edgcedg 29079   NeighbVtx cnbgr 29364  ComplGraphccplgr 29441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-nbgr 29365  df-uvtx 29418  df-cplgr 29443
This theorem is referenced by:  cplgrop  29469  cusconngr  30220  cplgredgex  35105
  Copyright terms: Public domain W3C validator