Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscplgredg | Structured version Visualization version GIF version |
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
iscplgredg.v | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
iscplgredg | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | iscplgrnb 27686 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
3 | df-3an 1087 | . . . . . 6 ⊢ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
5 | iscplgredg.v | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 5 | nbgrel 27610 | . . . . . 6 ⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
8 | eldifsn 4717 | . . . . . . 7 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) | |
9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
10 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣) → 𝑛 ∈ 𝑉) | |
11 | 9, 10 | anim12ci 613 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → (𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
12 | simprr 769 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → 𝑛 ≠ 𝑣) | |
13 | 11, 12 | jca 511 | . . . . . . 7 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
14 | 8, 13 | sylan2b 593 | . . . . . 6 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
15 | 14 | biantrurd 532 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
16 | 4, 7, 15 | 3bitr4d 310 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
17 | 16 | ralbidva 3119 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
18 | 17 | ralbidva 3119 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
19 | 2, 18 | bitrd 278 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 {cpr 4560 ‘cfv 6418 (class class class)co 7255 Vtxcvtx 27269 Edgcedg 27320 NeighbVtx cnbgr 27602 ComplGraphccplgr 27679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-nbgr 27603 df-uvtx 27656 df-cplgr 27681 |
This theorem is referenced by: cplgrop 27707 cusconngr 28456 cplgredgex 32982 |
Copyright terms: Public domain | W3C validator |