![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscplgredg | Structured version Visualization version GIF version |
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
iscplgredg.v | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
iscplgredg | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | iscplgrnb 29142 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
3 | df-3an 1086 | . . . . . 6 ⊢ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
5 | iscplgredg.v | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 5 | nbgrel 29066 | . . . . . 6 ⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
8 | eldifsn 4782 | . . . . . . 7 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) | |
9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
10 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣) → 𝑛 ∈ 𝑉) | |
11 | 9, 10 | anim12ci 613 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → (𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
12 | simprr 770 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → 𝑛 ≠ 𝑣) | |
13 | 11, 12 | jca 511 | . . . . . . 7 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
14 | 8, 13 | sylan2b 593 | . . . . . 6 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
15 | 14 | biantrurd 532 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
16 | 4, 7, 15 | 3bitr4d 311 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
17 | 16 | ralbidva 3167 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
18 | 17 | ralbidva 3167 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
19 | 2, 18 | bitrd 279 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 ∖ cdif 3937 ⊆ wss 3940 {csn 4620 {cpr 4622 ‘cfv 6533 (class class class)co 7401 Vtxcvtx 28725 Edgcedg 28776 NeighbVtx cnbgr 29058 ComplGraphccplgr 29135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-nbgr 29059 df-uvtx 29112 df-cplgr 29137 |
This theorem is referenced by: cplgrop 29163 cusconngr 29913 cplgredgex 34600 |
Copyright terms: Public domain | W3C validator |