MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgredg Structured version   Visualization version   GIF version

Theorem iscplgredg 29434
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
iscplgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iscplgredg (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑛,𝐺,𝑣   𝑛,𝑉   𝑣,𝑊   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉   𝑒,𝑊,𝑛,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑛)

Proof of Theorem iscplgredg
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21iscplgrnb 29433 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
3 df-3an 1089 . . . . . 6 (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
43a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
5 iscplgredg.v . . . . . . 7 𝐸 = (Edg‘𝐺)
61, 5nbgrel 29357 . . . . . 6 (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
76a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
8 eldifsn 4786 . . . . . . 7 (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛𝑉𝑛𝑣))
9 simpr 484 . . . . . . . . 9 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
10 simpl 482 . . . . . . . . 9 ((𝑛𝑉𝑛𝑣) → 𝑛𝑉)
119, 10anim12ci 614 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → (𝑛𝑉𝑣𝑉))
12 simprr 773 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → 𝑛𝑣)
1311, 12jca 511 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
148, 13sylan2b 594 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
1514biantrurd 532 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
164, 7, 153bitr4d 311 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1716ralbidva 3176 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1817ralbidva 3176 . 2 (𝐺𝑊 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
192, 18bitrd 279 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  wss 3951  {csn 4626  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  Edgcedg 29064   NeighbVtx cnbgr 29349  ComplGraphccplgr 29426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-nbgr 29350  df-uvtx 29403  df-cplgr 29428
This theorem is referenced by:  cplgrop  29454  cusconngr  30210  cplgredgex  35126
  Copyright terms: Public domain W3C validator