MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgredg Structured version   Visualization version   GIF version

Theorem iscplgredg 27784
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
iscplgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iscplgredg (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑛,𝐺,𝑣   𝑛,𝑉   𝑣,𝑊   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉   𝑒,𝑊,𝑛,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑛)

Proof of Theorem iscplgredg
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21iscplgrnb 27783 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
3 df-3an 1088 . . . . . 6 (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
43a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
5 iscplgredg.v . . . . . . 7 𝐸 = (Edg‘𝐺)
61, 5nbgrel 27707 . . . . . 6 (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
76a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
8 eldifsn 4720 . . . . . . 7 (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛𝑉𝑛𝑣))
9 simpr 485 . . . . . . . . 9 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
10 simpl 483 . . . . . . . . 9 ((𝑛𝑉𝑛𝑣) → 𝑛𝑉)
119, 10anim12ci 614 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → (𝑛𝑉𝑣𝑉))
12 simprr 770 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → 𝑛𝑣)
1311, 12jca 512 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
148, 13sylan2b 594 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
1514biantrurd 533 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
164, 7, 153bitr4d 311 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1716ralbidva 3111 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1817ralbidva 3111 . 2 (𝐺𝑊 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
192, 18bitrd 278 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Vtxcvtx 27366  Edgcedg 27417   NeighbVtx cnbgr 27699  ComplGraphccplgr 27776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-nbgr 27700  df-uvtx 27753  df-cplgr 27778
This theorem is referenced by:  cplgrop  27804  cusconngr  28555  cplgredgex  33082
  Copyright terms: Public domain W3C validator