![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscplgredg | Structured version Visualization version GIF version |
Description: A graph 𝐺 is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
iscplgredg.v | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
iscplgredg | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | iscplgrnb 26881 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
3 | df-3an 1082 | . . . . . 6 ⊢ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
5 | iscplgredg.v | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 5 | nbgrel 26805 | . . . . . 6 ⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
8 | eldifsn 4626 | . . . . . . 7 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) | |
9 | simpr 485 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
10 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣) → 𝑛 ∈ 𝑉) | |
11 | 9, 10 | anim12ci 613 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → (𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
12 | simprr 769 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → 𝑛 ≠ 𝑣) | |
13 | 11, 12 | jca 512 | . . . . . . 7 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
14 | 8, 13 | sylan2b 593 | . . . . . 6 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
15 | 14 | biantrurd 533 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
16 | 4, 7, 15 | 3bitr4d 312 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
17 | 16 | ralbidva 3163 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
18 | 17 | ralbidva 3163 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
19 | 2, 18 | bitrd 280 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∀wral 3105 ∃wrex 3106 ∖ cdif 3856 ⊆ wss 3859 {csn 4472 {cpr 4474 ‘cfv 6225 (class class class)co 7016 Vtxcvtx 26464 Edgcedg 26515 NeighbVtx cnbgr 26797 ComplGraphccplgr 26874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-1st 7545 df-2nd 7546 df-nbgr 26798 df-uvtx 26851 df-cplgr 26876 |
This theorem is referenced by: cplgrop 26902 cusconngr 27657 cplgredgex 31979 |
Copyright terms: Public domain | W3C validator |