MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structtocusgr Structured version   Visualization version   GIF version

Theorem structtocusgr 29430
Description: Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
structtousgr.p 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2}
structtousgr.s (𝜑𝑆 Struct 𝑋)
structtousgr.g 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
structtousgr.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
structtocusgr (𝜑𝐺 ∈ ComplUSGraph)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem structtocusgr
Dummy variables 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 structtousgr.p . . 3 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2}
2 structtousgr.s . . 3 (𝜑𝑆 Struct 𝑋)
3 structtousgr.g . . 3 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
4 structtousgr.b . . 3 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
51, 2, 3, 4structtousgr 29429 . 2 (𝜑𝐺 ∈ USGraph)
6 simpr 484 . . . . 5 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Vtx‘𝐺))
7 eldifi 4111 . . . . . . . 8 (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ (Vtx‘𝐺))
86, 7anim12ci 614 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)))
9 eldifsni 4771 . . . . . . . 8 (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛𝑣)
109adantl 481 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛𝑣)
11 fvexd 6896 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (Base‘𝑆) ∈ V)
123fveq2i 6884 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩))
13 eqid 2736 . . . . . . . . . . . . . 14 (.ef‘ndx) = (.ef‘ndx)
14 fvex 6894 . . . . . . . . . . . . . . 15 (Base‘𝑆) ∈ V
151cusgrexilem1 29423 . . . . . . . . . . . . . . 15 ((Base‘𝑆) ∈ V → ( I ↾ 𝑃) ∈ V)
1614, 15mp1i 13 . . . . . . . . . . . . . 14 (𝜑 → ( I ↾ 𝑃) ∈ V)
1713, 2, 4, 16setsvtx 29019 . . . . . . . . . . . . 13 (𝜑 → (Vtx‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)) = (Base‘𝑆))
1812, 17eqtrid 2783 . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝐺) = (Base‘𝑆))
1918eleq2d 2821 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (Vtx‘𝐺) ↔ 𝑣 ∈ (Base‘𝑆)))
2019biimpa 476 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Base‘𝑆))
2120adantr 480 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑣 ∈ (Base‘𝑆))
2218difeq1d 4105 . . . . . . . . . . . . 13 (𝜑 → ((Vtx‘𝐺) ∖ {𝑣}) = ((Base‘𝑆) ∖ {𝑣}))
2322eleq2d 2821 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) ↔ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2423biimpd 229 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2625imp 406 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣}))
271cusgrexilem2 29426 . . . . . . . . 9 ((((Base‘𝑆) ∈ V ∧ 𝑣 ∈ (Base‘𝑆)) ∧ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
2811, 21, 26, 27syl21anc 837 . . . . . . . 8 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
29 edgval 29033 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
303fveq2i 6884 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩))
3113, 2, 4, 16setsiedg 29020 . . . . . . . . . . . . 13 (𝜑 → (iEdg‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)) = ( I ↾ 𝑃))
3230, 31eqtrid 2783 . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝐺) = ( I ↾ 𝑃))
3332rneqd 5923 . . . . . . . . . . 11 (𝜑 → ran (iEdg‘𝐺) = ran ( I ↾ 𝑃))
3429, 33eqtrid 2783 . . . . . . . . . 10 (𝜑 → (Edg‘𝐺) = ran ( I ↾ 𝑃))
3534rexeqdv 3310 . . . . . . . . 9 (𝜑 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3635ad2antrr 726 . . . . . . . 8 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3728, 36mpbird 257 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒)
38 eqid 2736 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
39 eqid 2736 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
4038, 39nbgrel 29324 . . . . . . 7 (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛𝑣 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
418, 10, 37, 40syl3anbrc 1344 . . . . . 6 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ (𝐺 NeighbVtx 𝑣))
4241ralrimiva 3133 . . . . 5 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
4338uvtxel 29372 . . . . 5 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ (Vtx‘𝐺) ∧ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
446, 42, 43sylanbrc 583 . . . 4 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (UnivVtx‘𝐺))
4544ralrimiva 3133 . . 3 (𝜑 → ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺))
465elexd 3488 . . . 4 (𝜑𝐺 ∈ V)
4738iscplgr 29399 . . . 4 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺)))
4846, 47syl 17 . . 3 (𝜑 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺)))
4945, 48mpbird 257 . 2 (𝜑𝐺 ∈ ComplGraph)
50 iscusgr 29402 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
515, 49, 50sylanbrc 583 1 (𝜑𝐺 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cdif 3928  wss 3931  𝒫 cpw 4580  {csn 4606  {cpr 4608  cop 4612   class class class wbr 5124   I cid 5552  dom cdm 5659  ran crn 5660  cres 5661  cfv 6536  (class class class)co 7410  2c2 12300  chash 14353   Struct cstr 17170   sSet csts 17187  ndxcnx 17217  Basecbs 17233  .efcedgf 28972  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  USGraphcusgr 29133   NeighbVtx cnbgr 29316  UnivVtxcuvtx 29369  ComplGraphccplgr 29393  ComplUSGraphccusgr 29394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-edgf 28973  df-vtx 28982  df-iedg 28983  df-edg 29032  df-usgr 29135  df-nbgr 29317  df-uvtx 29370  df-cplgr 29395  df-cusgr 29396
This theorem is referenced by:  cffldtocusgr  29431  cffldtocusgrOLD  29432
  Copyright terms: Public domain W3C validator