MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structtocusgr Structured version   Visualization version   GIF version

Theorem structtocusgr 27716
Description: Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021.) (Revised by AV, 17-Nov-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
structtousgr.p 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2}
structtousgr.s (𝜑𝑆 Struct 𝑋)
structtousgr.g 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
structtousgr.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
structtocusgr (𝜑𝐺 ∈ ComplUSGraph)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem structtocusgr
Dummy variables 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 structtousgr.p . . 3 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2}
2 structtousgr.s . . 3 (𝜑𝑆 Struct 𝑋)
3 structtousgr.g . . 3 𝐺 = (𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
4 structtousgr.b . . 3 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
51, 2, 3, 4structtousgr 27715 . 2 (𝜑𝐺 ∈ USGraph)
6 simpr 484 . . . . 5 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Vtx‘𝐺))
7 eldifi 4057 . . . . . . . 8 (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ (Vtx‘𝐺))
86, 7anim12ci 613 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)))
9 eldifsni 4720 . . . . . . . 8 (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛𝑣)
109adantl 481 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛𝑣)
11 fvexd 6771 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (Base‘𝑆) ∈ V)
123fveq2i 6759 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩))
13 eqid 2738 . . . . . . . . . . . . . 14 (.ef‘ndx) = (.ef‘ndx)
14 fvex 6769 . . . . . . . . . . . . . . 15 (Base‘𝑆) ∈ V
151cusgrexilem1 27709 . . . . . . . . . . . . . . 15 ((Base‘𝑆) ∈ V → ( I ↾ 𝑃) ∈ V)
1614, 15mp1i 13 . . . . . . . . . . . . . 14 (𝜑 → ( I ↾ 𝑃) ∈ V)
1713, 2, 4, 16setsvtx 27308 . . . . . . . . . . . . 13 (𝜑 → (Vtx‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)) = (Base‘𝑆))
1812, 17syl5eq 2791 . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝐺) = (Base‘𝑆))
1918eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (Vtx‘𝐺) ↔ 𝑣 ∈ (Base‘𝑆)))
2019biimpa 476 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Base‘𝑆))
2120adantr 480 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑣 ∈ (Base‘𝑆))
2218difeq1d 4052 . . . . . . . . . . . . 13 (𝜑 → ((Vtx‘𝐺) ∖ {𝑣}) = ((Base‘𝑆) ∖ {𝑣}))
2322eleq2d 2824 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) ↔ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2423biimpd 228 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})))
2625imp 406 . . . . . . . . 9 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣}))
271cusgrexilem2 27712 . . . . . . . . 9 ((((Base‘𝑆) ∈ V ∧ 𝑣 ∈ (Base‘𝑆)) ∧ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
2811, 21, 26, 27syl21anc 834 . . . . . . . 8 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)
29 edgval 27322 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
303fveq2i 6759 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩))
3113, 2, 4, 16setsiedg 27309 . . . . . . . . . . . . 13 (𝜑 → (iEdg‘(𝑆 sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)) = ( I ↾ 𝑃))
3230, 31syl5eq 2791 . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝐺) = ( I ↾ 𝑃))
3332rneqd 5836 . . . . . . . . . . 11 (𝜑 → ran (iEdg‘𝐺) = ran ( I ↾ 𝑃))
3429, 33syl5eq 2791 . . . . . . . . . 10 (𝜑 → (Edg‘𝐺) = ran ( I ↾ 𝑃))
3534rexeqdv 3340 . . . . . . . . 9 (𝜑 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3635ad2antrr 722 . . . . . . . 8 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒))
3728, 36mpbird 256 . . . . . . 7 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒)
38 eqid 2738 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
39 eqid 2738 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
4038, 39nbgrel 27610 . . . . . . 7 (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛𝑣 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
418, 10, 37, 40syl3anbrc 1341 . . . . . 6 (((𝜑𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ (𝐺 NeighbVtx 𝑣))
4241ralrimiva 3107 . . . . 5 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
4338uvtxel 27658 . . . . 5 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ (Vtx‘𝐺) ∧ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
446, 42, 43sylanbrc 582 . . . 4 ((𝜑𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (UnivVtx‘𝐺))
4544ralrimiva 3107 . . 3 (𝜑 → ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺))
465elexd 3442 . . . 4 (𝜑𝐺 ∈ V)
4738iscplgr 27685 . . . 4 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺)))
4846, 47syl 17 . . 3 (𝜑 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺)))
4945, 48mpbird 256 . 2 (𝜑𝐺 ∈ ComplGraph)
50 iscusgr 27688 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
515, 49, 50sylanbrc 582 1 (𝜑𝐺 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  𝒫 cpw 4530  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  cfv 6418  (class class class)co 7255  2c2 11958  chash 13972   Struct cstr 16775   sSet csts 16792  ndxcnx 16822  Basecbs 16840  .efcedgf 27259  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  USGraphcusgr 27422   NeighbVtx cnbgr 27602  UnivVtxcuvtx 27655  ComplGraphccplgr 27679  ComplUSGraphccusgr 27680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-edgf 27260  df-vtx 27271  df-iedg 27272  df-edg 27321  df-usgr 27424  df-nbgr 27603  df-uvtx 27656  df-cplgr 27681  df-cusgr 27682
This theorem is referenced by:  cffldtocusgr  27717
  Copyright terms: Public domain W3C validator