| Step | Hyp | Ref
| Expression |
| 1 | | structtousgr.p |
. . 3
⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘𝑆) ∣ (♯‘𝑥) = 2} |
| 2 | | structtousgr.s |
. . 3
⊢ (𝜑 → 𝑆 Struct 𝑋) |
| 3 | | structtousgr.g |
. . 3
⊢ 𝐺 = (𝑆 sSet 〈(.ef‘ndx), ( I ↾
𝑃)〉) |
| 4 | | structtousgr.b |
. . 3
⊢ (𝜑 → (Base‘ndx) ∈
dom 𝑆) |
| 5 | 1, 2, 3, 4 | structtousgr 29463 |
. 2
⊢ (𝜑 → 𝐺 ∈ USGraph) |
| 6 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Vtx‘𝐺)) |
| 7 | | eldifi 4130 |
. . . . . . . 8
⊢ (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ (Vtx‘𝐺)) |
| 8 | 6, 7 | anim12ci 614 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺))) |
| 9 | | eldifsni 4789 |
. . . . . . . 8
⊢ (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ≠ 𝑣) |
| 10 | 9 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ≠ 𝑣) |
| 11 | | fvexd 6920 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (Base‘𝑆) ∈ V) |
| 12 | 3 | fveq2i 6908 |
. . . . . . . . . . . . 13
⊢
(Vtx‘𝐺) =
(Vtx‘(𝑆 sSet
〈(.ef‘ndx), ( I ↾ 𝑃)〉)) |
| 13 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(.ef‘ndx) = (.ef‘ndx) |
| 14 | | fvex 6918 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑆)
∈ V |
| 15 | 1 | cusgrexilem1 29457 |
. . . . . . . . . . . . . . 15
⊢
((Base‘𝑆)
∈ V → ( I ↾ 𝑃) ∈ V) |
| 16 | 14, 15 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ( I ↾ 𝑃) ∈ V) |
| 17 | 13, 2, 4, 16 | setsvtx 29053 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Vtx‘(𝑆 sSet 〈(.ef‘ndx), ( I
↾ 𝑃)〉)) =
(Base‘𝑆)) |
| 18 | 12, 17 | eqtrid 2788 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Vtx‘𝐺) = (Base‘𝑆)) |
| 19 | 18 | eleq2d 2826 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑣 ∈ (Vtx‘𝐺) ↔ 𝑣 ∈ (Base‘𝑆))) |
| 20 | 19 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Base‘𝑆)) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑣 ∈ (Base‘𝑆)) |
| 22 | 18 | difeq1d 4124 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((Vtx‘𝐺) ∖ {𝑣}) = ((Base‘𝑆) ∖ {𝑣})) |
| 23 | 22 | eleq2d 2826 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) ↔ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣}))) |
| 24 | 23 | biimpd 229 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣}))) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣}) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣}))) |
| 26 | 25 | imp 406 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})) |
| 27 | 1 | cusgrexilem2 29460 |
. . . . . . . . 9
⊢
((((Base‘𝑆)
∈ V ∧ 𝑣 ∈
(Base‘𝑆)) ∧ 𝑛 ∈ ((Base‘𝑆) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
| 28 | 11, 21, 26, 27 | syl21anc 837 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
| 29 | | edgval 29067 |
. . . . . . . . . . 11
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
| 30 | 3 | fveq2i 6908 |
. . . . . . . . . . . . 13
⊢
(iEdg‘𝐺) =
(iEdg‘(𝑆 sSet
〈(.ef‘ndx), ( I ↾ 𝑃)〉)) |
| 31 | 13, 2, 4, 16 | setsiedg 29054 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (iEdg‘(𝑆 sSet 〈(.ef‘ndx), ( I
↾ 𝑃)〉)) = ( I
↾ 𝑃)) |
| 32 | 30, 31 | eqtrid 2788 |
. . . . . . . . . . . 12
⊢ (𝜑 → (iEdg‘𝐺) = ( I ↾ 𝑃)) |
| 33 | 32 | rneqd 5948 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (iEdg‘𝐺) = ran ( I ↾ 𝑃)) |
| 34 | 29, 33 | eqtrid 2788 |
. . . . . . . . . 10
⊢ (𝜑 → (Edg‘𝐺) = ran ( I ↾ 𝑃)) |
| 35 | 34 | rexeqdv 3326 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)) |
| 36 | 35 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒)) |
| 37 | 28, 36 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) |
| 38 | | eqid 2736 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 39 | | eqid 2736 |
. . . . . . . 8
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 40 | 38, 39 | nbgrel 29358 |
. . . . . . 7
⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒)) |
| 41 | 8, 10, 37, 40 | syl3anbrc 1343 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})) → 𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |
| 42 | 41 | ralrimiva 3145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |
| 43 | 38 | uvtxel 29406 |
. . . . 5
⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ (Vtx‘𝐺) ∧ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
| 44 | 6, 42, 43 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (UnivVtx‘𝐺)) |
| 45 | 44 | ralrimiva 3145 |
. . 3
⊢ (𝜑 → ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺)) |
| 46 | 5 | elexd 3503 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ V) |
| 47 | 38 | iscplgr 29433 |
. . . 4
⊢ (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔
∀𝑣 ∈
(Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺))) |
| 48 | 46, 47 | syl 17 |
. . 3
⊢ (𝜑 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∈ (UnivVtx‘𝐺))) |
| 49 | 45, 48 | mpbird 257 |
. 2
⊢ (𝜑 → 𝐺 ∈ ComplGraph) |
| 50 | | iscusgr 29436 |
. 2
⊢ (𝐺 ∈ ComplUSGraph ↔
(𝐺 ∈ USGraph ∧
𝐺 ∈
ComplGraph)) |
| 51 | 5, 49, 50 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐺 ∈ ComplUSGraph) |