![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reofld | Structured version Visualization version GIF version |
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
reofld | β’ βfld β oField |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 21556 | . 2 β’ βfld β Field | |
2 | isfld 20640 | . . . . 5 β’ (βfld β Field β (βfld β DivRing β§ βfld β CRing)) | |
3 | 2 | simplbi 496 | . . . 4 β’ (βfld β Field β βfld β DivRing) |
4 | drngring 20636 | . . . 4 β’ (βfld β DivRing β βfld β Ring) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 β’ βfld β Ring |
6 | ringgrp 20183 | . . . . 5 β’ (βfld β Ring β βfld β Grp) | |
7 | 5, 6 | ax-mp 5 | . . . 4 β’ βfld β Grp |
8 | grpmnd 18902 | . . . . . 6 β’ (βfld β Grp β βfld β Mnd) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 β’ βfld β Mnd |
10 | retos 21555 | . . . . 5 β’ βfld β Toset | |
11 | simpl 481 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β β) | |
12 | simpr1 1191 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β β) | |
13 | simpr2 1192 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β β) | |
14 | simpr3 1193 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β€ π) | |
15 | 11, 12, 13, 14 | leadd1dd 11864 | . . . . . . . . 9 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β (π + π) β€ (π + π)) |
16 | 15 | 3anassrs 1357 | . . . . . . . 8 β’ ((((π β β β§ π β β) β§ π β β) β§ π β€ π) β (π + π) β€ (π + π)) |
17 | 16 | ex 411 | . . . . . . 7 β’ (((π β β β§ π β β) β§ π β β) β (π β€ π β (π + π) β€ (π + π))) |
18 | 17 | 3impa 1107 | . . . . . 6 β’ ((π β β β§ π β β β§ π β β) β (π β€ π β (π + π) β€ (π + π))) |
19 | 18 | rgen3 3198 | . . . . 5 β’ βπ β β βπ β β βπ β β (π β€ π β (π + π) β€ (π + π)) |
20 | rebase 21543 | . . . . . 6 β’ β = (Baseββfld) | |
21 | replusg 21547 | . . . . . 6 β’ + = (+gββfld) | |
22 | rele2 21551 | . . . . . 6 β’ β€ = (leββfld) | |
23 | 20, 21, 22 | isomnd 32799 | . . . . 5 β’ (βfld β oMnd β (βfld β Mnd β§ βfld β Toset β§ βπ β β βπ β β βπ β β (π β€ π β (π + π) β€ (π + π)))) |
24 | 9, 10, 19, 23 | mpbir3an 1338 | . . . 4 β’ βfld β oMnd |
25 | isogrp 32800 | . . . 4 β’ (βfld β oGrp β (βfld β Grp β§ βfld β oMnd)) | |
26 | 7, 24, 25 | mpbir2an 709 | . . 3 β’ βfld β oGrp |
27 | mulge0 11768 | . . . . . 6 β’ (((π β β β§ 0 β€ π) β§ (π β β β§ 0 β€ π)) β 0 β€ (π Β· π)) | |
28 | 27 | an4s 658 | . . . . 5 β’ (((π β β β§ π β β) β§ (0 β€ π β§ 0 β€ π)) β 0 β€ (π Β· π)) |
29 | 28 | ex 411 | . . . 4 β’ ((π β β β§ π β β) β ((0 β€ π β§ 0 β€ π) β 0 β€ (π Β· π))) |
30 | 29 | rgen2 3193 | . . 3 β’ βπ β β βπ β β ((0 β€ π β§ 0 β€ π) β 0 β€ (π Β· π)) |
31 | re0g 21549 | . . . 4 β’ 0 = (0gββfld) | |
32 | remulr 21548 | . . . 4 β’ Β· = (.rββfld) | |
33 | 20, 31, 32, 22 | isorng 33032 | . . 3 β’ (βfld β oRing β (βfld β Ring β§ βfld β oGrp β§ βπ β β βπ β β ((0 β€ π β§ 0 β€ π) β 0 β€ (π Β· π)))) |
34 | 5, 26, 30, 33 | mpbir3an 1338 | . 2 β’ βfld β oRing |
35 | isofld 33035 | . 2 β’ (βfld β oField β (βfld β Field β§ βfld β oRing)) | |
36 | 1, 34, 35 | mpbir2an 709 | 1 β’ βfld β oField |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 β wcel 2098 βwral 3057 class class class wbr 5150 (class class class)co 7424 βcr 11143 0cc0 11144 + caddc 11147 Β· cmul 11149 β€ cle 11285 Tosetctos 18413 Mndcmnd 18699 Grpcgrp 18895 Ringcrg 20178 CRingccrg 20179 DivRingcdr 20629 Fieldcfield 20630 βfldcrefld 21541 oMndcomnd 32795 oGrpcogrp 32796 oRingcorng 33028 oFieldcofld 33029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-addf 11223 ax-mulf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-tpos 8236 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-fz 13523 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-0g 17428 df-proset 18292 df-poset 18310 df-plt 18327 df-toset 18414 df-ps 18563 df-tsr 18564 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18898 df-minusg 18899 df-subg 19083 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-cring 20181 df-oppr 20278 df-dvdsr 20301 df-unit 20302 df-invr 20332 df-dvr 20345 df-subrng 20488 df-subrg 20513 df-drng 20631 df-field 20632 df-cnfld 21285 df-refld 21542 df-omnd 32797 df-ogrp 32798 df-orng 33030 df-ofld 33031 |
This theorem is referenced by: nn0omnd 33075 rearchi 33076 rerrext 33615 cnrrext 33616 |
Copyright terms: Public domain | W3C validator |