Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reofld Structured version   Visualization version   GIF version

Theorem reofld 31116
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
reofld fld ∈ oField

Proof of Theorem reofld
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refld 20435 . 2 fld ∈ Field
2 isfld 19630 . . . . 5 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
32simplbi 501 . . . 4 (ℝfld ∈ Field → ℝfld ∈ DivRing)
4 drngring 19628 . . . 4 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
51, 3, 4mp2b 10 . . 3 fld ∈ Ring
6 ringgrp 19421 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Grp)
75, 6ax-mp 5 . . . 4 fld ∈ Grp
8 grpmnd 18226 . . . . . 6 (ℝfld ∈ Grp → ℝfld ∈ Mnd)
97, 8ax-mp 5 . . . . 5 fld ∈ Mnd
10 retos 20434 . . . . 5 fld ∈ Toset
11 simpl 486 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
12 simpr1 1195 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
13 simpr2 1196 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑐 ∈ ℝ)
14 simpr3 1197 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑎𝑏)
1511, 12, 13, 14leadd1dd 11332 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
16153anassrs 1361 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑎𝑏) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
1716ex 416 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))
18173impa 1111 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))
1918rgen3 3116 . . . . 5 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
20 rebase 20422 . . . . . 6 ℝ = (Base‘ℝfld)
21 replusg 20426 . . . . . 6 + = (+g‘ℝfld)
22 rele2 20430 . . . . . 6 ≤ = (le‘ℝfld)
2320, 21, 22isomnd 30904 . . . . 5 (ℝfld ∈ oMnd ↔ (ℝfld ∈ Mnd ∧ ℝfld ∈ Toset ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))
249, 10, 19, 23mpbir3an 1342 . . . 4 fld ∈ oMnd
25 isogrp 30905 . . . 4 (ℝfld ∈ oGrp ↔ (ℝfld ∈ Grp ∧ ℝfld ∈ oMnd))
267, 24, 25mpbir2an 711 . . 3 fld ∈ oGrp
27 mulge0 11236 . . . . . 6 (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) ∧ (𝑏 ∈ ℝ ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏))
2827an4s 660 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏))
2928ex 416 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))
3029rgen2 3115 . . 3 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))
31 re0g 20428 . . . 4 0 = (0g‘ℝfld)
32 remulr 20427 . . . 4 · = (.r‘ℝfld)
3320, 31, 32, 22isorng 31075 . . 3 (ℝfld ∈ oRing ↔ (ℝfld ∈ Ring ∧ ℝfld ∈ oGrp ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))))
345, 26, 30, 33mpbir3an 1342 . 2 fld ∈ oRing
35 isofld 31078 . 2 (ℝfld ∈ oField ↔ (ℝfld ∈ Field ∧ ℝfld ∈ oRing))
361, 34, 35mpbir2an 711 1 fld ∈ oField
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wcel 2114  wral 3053   class class class wbr 5030  (class class class)co 7170  cr 10614  0cc0 10615   + caddc 10618   · cmul 10620  cle 10754  Tosetctos 17759  Mndcmnd 18027  Grpcgrp 18219  Ringcrg 19416  CRingccrg 19417  DivRingcdr 19621  Fieldcfield 19622  fldcrefld 20420  oMndcomnd 30900  oGrpcogrp 30901  oRingcorng 31071  oFieldcofld 31072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-0g 16818  df-proset 17654  df-poset 17672  df-plt 17684  df-toset 17760  df-ps 17926  df-tsr 17927  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-subg 18394  df-cmn 19026  df-mgp 19359  df-ur 19371  df-ring 19418  df-cring 19419  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-field 19624  df-subrg 19652  df-cnfld 20218  df-refld 20421  df-omnd 30902  df-ogrp 30903  df-orng 31073  df-ofld 31074
This theorem is referenced by:  nn0omnd  31117  rearchi  31118  rerrext  31529  cnrrext  31530
  Copyright terms: Public domain W3C validator