![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reofld | Structured version Visualization version GIF version |
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
reofld | β’ βfld β oField |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 21163 | . 2 β’ βfld β Field | |
2 | isfld 20318 | . . . . 5 β’ (βfld β Field β (βfld β DivRing β§ βfld β CRing)) | |
3 | 2 | simplbi 498 | . . . 4 β’ (βfld β Field β βfld β DivRing) |
4 | drngring 20314 | . . . 4 β’ (βfld β DivRing β βfld β Ring) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 β’ βfld β Ring |
6 | ringgrp 20054 | . . . . 5 β’ (βfld β Ring β βfld β Grp) | |
7 | 5, 6 | ax-mp 5 | . . . 4 β’ βfld β Grp |
8 | grpmnd 18822 | . . . . . 6 β’ (βfld β Grp β βfld β Mnd) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 β’ βfld β Mnd |
10 | retos 21162 | . . . . 5 β’ βfld β Toset | |
11 | simpl 483 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β β) | |
12 | simpr1 1194 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β β) | |
13 | simpr2 1195 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β β) | |
14 | simpr3 1196 | . . . . . . . . . 10 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β π β€ π) | |
15 | 11, 12, 13, 14 | leadd1dd 11824 | . . . . . . . . 9 β’ ((π β β β§ (π β β β§ π β β β§ π β€ π)) β (π + π) β€ (π + π)) |
16 | 15 | 3anassrs 1360 | . . . . . . . 8 β’ ((((π β β β§ π β β) β§ π β β) β§ π β€ π) β (π + π) β€ (π + π)) |
17 | 16 | ex 413 | . . . . . . 7 β’ (((π β β β§ π β β) β§ π β β) β (π β€ π β (π + π) β€ (π + π))) |
18 | 17 | 3impa 1110 | . . . . . 6 β’ ((π β β β§ π β β β§ π β β) β (π β€ π β (π + π) β€ (π + π))) |
19 | 18 | rgen3 3202 | . . . . 5 β’ βπ β β βπ β β βπ β β (π β€ π β (π + π) β€ (π + π)) |
20 | rebase 21150 | . . . . . 6 β’ β = (Baseββfld) | |
21 | replusg 21154 | . . . . . 6 β’ + = (+gββfld) | |
22 | rele2 21158 | . . . . . 6 β’ β€ = (leββfld) | |
23 | 20, 21, 22 | isomnd 32206 | . . . . 5 β’ (βfld β oMnd β (βfld β Mnd β§ βfld β Toset β§ βπ β β βπ β β βπ β β (π β€ π β (π + π) β€ (π + π)))) |
24 | 9, 10, 19, 23 | mpbir3an 1341 | . . . 4 β’ βfld β oMnd |
25 | isogrp 32207 | . . . 4 β’ (βfld β oGrp β (βfld β Grp β§ βfld β oMnd)) | |
26 | 7, 24, 25 | mpbir2an 709 | . . 3 β’ βfld β oGrp |
27 | mulge0 11728 | . . . . . 6 β’ (((π β β β§ 0 β€ π) β§ (π β β β§ 0 β€ π)) β 0 β€ (π Β· π)) | |
28 | 27 | an4s 658 | . . . . 5 β’ (((π β β β§ π β β) β§ (0 β€ π β§ 0 β€ π)) β 0 β€ (π Β· π)) |
29 | 28 | ex 413 | . . . 4 β’ ((π β β β§ π β β) β ((0 β€ π β§ 0 β€ π) β 0 β€ (π Β· π))) |
30 | 29 | rgen2 3197 | . . 3 β’ βπ β β βπ β β ((0 β€ π β§ 0 β€ π) β 0 β€ (π Β· π)) |
31 | re0g 21156 | . . . 4 β’ 0 = (0gββfld) | |
32 | remulr 21155 | . . . 4 β’ Β· = (.rββfld) | |
33 | 20, 31, 32, 22 | isorng 32405 | . . 3 β’ (βfld β oRing β (βfld β Ring β§ βfld β oGrp β§ βπ β β βπ β β ((0 β€ π β§ 0 β€ π) β 0 β€ (π Β· π)))) |
34 | 5, 26, 30, 33 | mpbir3an 1341 | . 2 β’ βfld β oRing |
35 | isofld 32408 | . 2 β’ (βfld β oField β (βfld β Field β§ βfld β oRing)) | |
36 | 1, 34, 35 | mpbir2an 709 | 1 β’ βfld β oField |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 β wcel 2106 βwral 3061 class class class wbr 5147 (class class class)co 7405 βcr 11105 0cc0 11106 + caddc 11109 Β· cmul 11111 β€ cle 11245 Tosetctos 18365 Mndcmnd 18621 Grpcgrp 18815 Ringcrg 20049 CRingccrg 20050 DivRingcdr 20307 Fieldcfield 20308 βfldcrefld 21148 oMndcomnd 32202 oGrpcogrp 32203 oRingcorng 32401 oFieldcofld 32402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-0g 17383 df-proset 18244 df-poset 18262 df-plt 18279 df-toset 18366 df-ps 18515 df-tsr 18516 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-subg 18997 df-cmn 19644 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-drng 20309 df-field 20310 df-subrg 20353 df-cnfld 20937 df-refld 21149 df-omnd 32204 df-ogrp 32205 df-orng 32403 df-ofld 32404 |
This theorem is referenced by: nn0omnd 32448 rearchi 32449 rerrext 32977 cnrrext 32978 |
Copyright terms: Public domain | W3C validator |