| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reofld | Structured version Visualization version GIF version | ||
| Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| reofld | ⊢ ℝfld ∈ oField |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refld 21565 | . 2 ⊢ ℝfld ∈ Field | |
| 2 | isfld 20664 | . . . . 5 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . . . 4 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
| 4 | drngring 20660 | . . . 4 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
| 5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ ℝfld ∈ Ring |
| 6 | ringgrp 20164 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ℝfld ∈ Grp |
| 8 | grpmnd 18861 | . . . . . 6 ⊢ (ℝfld ∈ Grp → ℝfld ∈ Mnd) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Mnd |
| 10 | retos 21564 | . . . . 5 ⊢ ℝfld ∈ Toset | |
| 11 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ∈ ℝ) | |
| 12 | simpr1 1195 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑏 ∈ ℝ) | |
| 13 | simpr2 1196 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑐 ∈ ℝ) | |
| 14 | simpr3 1197 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ≤ 𝑏) | |
| 15 | 11, 12, 13, 14 | leadd1dd 11742 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
| 16 | 15 | 3anassrs 1361 | . . . . . . . 8 ⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑎 ≤ 𝑏) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
| 17 | 16 | ex 412 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
| 18 | 17 | 3impa 1109 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
| 19 | 18 | rgen3 3178 | . . . . 5 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
| 20 | rebase 21552 | . . . . . 6 ⊢ ℝ = (Base‘ℝfld) | |
| 21 | replusg 21556 | . . . . . 6 ⊢ + = (+g‘ℝfld) | |
| 22 | rele2 21560 | . . . . . 6 ⊢ ≤ = (le‘ℝfld) | |
| 23 | 20, 21, 22 | isomnd 20043 | . . . . 5 ⊢ (ℝfld ∈ oMnd ↔ (ℝfld ∈ Mnd ∧ ℝfld ∈ Toset ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
| 24 | 9, 10, 19, 23 | mpbir3an 1342 | . . . 4 ⊢ ℝfld ∈ oMnd |
| 25 | isogrp 20044 | . . . 4 ⊢ (ℝfld ∈ oGrp ↔ (ℝfld ∈ Grp ∧ ℝfld ∈ oMnd)) | |
| 26 | 7, 24, 25 | mpbir2an 711 | . . 3 ⊢ ℝfld ∈ oGrp |
| 27 | mulge0 11646 | . . . . . 6 ⊢ (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) ∧ (𝑏 ∈ ℝ ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) | |
| 28 | 27 | an4s 660 | . . . . 5 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) |
| 29 | 28 | ex 412 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) |
| 30 | 29 | rgen2 3173 | . . 3 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)) |
| 31 | re0g 21558 | . . . 4 ⊢ 0 = (0g‘ℝfld) | |
| 32 | remulr 21557 | . . . 4 ⊢ · = (.r‘ℝfld) | |
| 33 | 20, 31, 32, 22 | isorng 20785 | . . 3 ⊢ (ℝfld ∈ oRing ↔ (ℝfld ∈ Ring ∧ ℝfld ∈ oGrp ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 34 | 5, 26, 30, 33 | mpbir3an 1342 | . 2 ⊢ ℝfld ∈ oRing |
| 35 | isofld 20788 | . 2 ⊢ (ℝfld ∈ oField ↔ (ℝfld ∈ Field ∧ ℝfld ∈ oRing)) | |
| 36 | 1, 34, 35 | mpbir2an 711 | 1 ⊢ ℝfld ∈ oField |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 + caddc 11020 · cmul 11022 ≤ cle 11158 Tosetctos 18328 Mndcmnd 18650 Grpcgrp 18854 oMndcomnd 20039 oGrpcogrp 20040 Ringcrg 20159 CRingccrg 20160 DivRingcdr 20653 Fieldcfield 20654 oRingcorng 20781 oFieldcofld 20782 ℝfldcrefld 21550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-0g 17352 df-proset 18208 df-poset 18227 df-plt 18242 df-toset 18329 df-ps 18480 df-tsr 18481 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-subg 19044 df-cmn 19702 df-abl 19703 df-omnd 20041 df-ogrp 20042 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-subrng 20470 df-subrg 20494 df-drng 20655 df-field 20656 df-orng 20783 df-ofld 20784 df-cnfld 21301 df-refld 21551 |
| This theorem is referenced by: nn0omnd 33353 rearchi 33355 rerrext 34094 cnrrext 34095 |
| Copyright terms: Public domain | W3C validator |