Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reofld Structured version   Visualization version   GIF version

Theorem reofld 33359
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
reofld fld ∈ oField

Proof of Theorem reofld
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refld 21579 . 2 fld ∈ Field
2 isfld 20700 . . . . 5 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
32simplbi 497 . . . 4 (ℝfld ∈ Field → ℝfld ∈ DivRing)
4 drngring 20696 . . . 4 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
51, 3, 4mp2b 10 . . 3 fld ∈ Ring
6 ringgrp 20198 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Grp)
75, 6ax-mp 5 . . . 4 fld ∈ Grp
8 grpmnd 18923 . . . . . 6 (ℝfld ∈ Grp → ℝfld ∈ Mnd)
97, 8ax-mp 5 . . . . 5 fld ∈ Mnd
10 retos 21578 . . . . 5 fld ∈ Toset
11 simpl 482 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
12 simpr1 1195 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
13 simpr2 1196 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑐 ∈ ℝ)
14 simpr3 1197 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → 𝑎𝑏)
1511, 12, 13, 14leadd1dd 11851 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎𝑏)) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
16153anassrs 1361 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑎𝑏) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
1716ex 412 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))
18173impa 1109 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))
1918rgen3 3189 . . . . 5 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))
20 rebase 21566 . . . . . 6 ℝ = (Base‘ℝfld)
21 replusg 21570 . . . . . 6 + = (+g‘ℝfld)
22 rele2 21574 . . . . . 6 ≤ = (le‘ℝfld)
2320, 21, 22isomnd 33069 . . . . 5 (ℝfld ∈ oMnd ↔ (ℝfld ∈ Mnd ∧ ℝfld ∈ Toset ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))
249, 10, 19, 23mpbir3an 1342 . . . 4 fld ∈ oMnd
25 isogrp 33070 . . . 4 (ℝfld ∈ oGrp ↔ (ℝfld ∈ Grp ∧ ℝfld ∈ oMnd))
267, 24, 25mpbir2an 711 . . 3 fld ∈ oGrp
27 mulge0 11755 . . . . . 6 (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) ∧ (𝑏 ∈ ℝ ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏))
2827an4s 660 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏))
2928ex 412 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))
3029rgen2 3184 . . 3 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))
31 re0g 21572 . . . 4 0 = (0g‘ℝfld)
32 remulr 21571 . . . 4 · = (.r‘ℝfld)
3320, 31, 32, 22isorng 33321 . . 3 (ℝfld ∈ oRing ↔ (ℝfld ∈ Ring ∧ ℝfld ∈ oGrp ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))))
345, 26, 30, 33mpbir3an 1342 . 2 fld ∈ oRing
35 isofld 33324 . 2 (ℝfld ∈ oField ↔ (ℝfld ∈ Field ∧ ℝfld ∈ oRing))
361, 34, 35mpbir2an 711 1 fld ∈ oField
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2108  wral 3051   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129   + caddc 11132   · cmul 11134  cle 11270  Tosetctos 18426  Mndcmnd 18712  Grpcgrp 18916  Ringcrg 20193  CRingccrg 20194  DivRingcdr 20689  Fieldcfield 20690  fldcrefld 21564  oMndcomnd 33065  oGrpcogrp 33066  oRingcorng 33317  oFieldcofld 33318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-proset 18306  df-poset 18325  df-plt 18340  df-toset 18427  df-ps 18576  df-tsr 18577  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-cnfld 21316  df-refld 21565  df-omnd 33067  df-ogrp 33068  df-orng 33319  df-ofld 33320
This theorem is referenced by:  nn0omnd  33360  rearchi  33361  rerrext  34040  cnrrext  34041
  Copyright terms: Public domain W3C validator