Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reofld | Structured version Visualization version GIF version |
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
reofld | ⊢ ℝfld ∈ oField |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 20852 | . 2 ⊢ ℝfld ∈ Field | |
2 | isfld 20028 | . . . . 5 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
3 | 2 | simplbi 497 | . . . 4 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
4 | drngring 20026 | . . . 4 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ ℝfld ∈ Ring |
6 | ringgrp 19816 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ℝfld ∈ Grp |
8 | grpmnd 18612 | . . . . . 6 ⊢ (ℝfld ∈ Grp → ℝfld ∈ Mnd) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Mnd |
10 | retos 20851 | . . . . 5 ⊢ ℝfld ∈ Toset | |
11 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ∈ ℝ) | |
12 | simpr1 1192 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑏 ∈ ℝ) | |
13 | simpr2 1193 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑐 ∈ ℝ) | |
14 | simpr3 1194 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ≤ 𝑏) | |
15 | 11, 12, 13, 14 | leadd1dd 11617 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
16 | 15 | 3anassrs 1358 | . . . . . . . 8 ⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑎 ≤ 𝑏) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
17 | 16 | ex 412 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
18 | 17 | 3impa 1108 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
19 | 18 | rgen3 3193 | . . . . 5 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
20 | rebase 20839 | . . . . . 6 ⊢ ℝ = (Base‘ℝfld) | |
21 | replusg 20843 | . . . . . 6 ⊢ + = (+g‘ℝfld) | |
22 | rele2 20847 | . . . . . 6 ⊢ ≤ = (le‘ℝfld) | |
23 | 20, 21, 22 | isomnd 31355 | . . . . 5 ⊢ (ℝfld ∈ oMnd ↔ (ℝfld ∈ Mnd ∧ ℝfld ∈ Toset ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
24 | 9, 10, 19, 23 | mpbir3an 1339 | . . . 4 ⊢ ℝfld ∈ oMnd |
25 | isogrp 31356 | . . . 4 ⊢ (ℝfld ∈ oGrp ↔ (ℝfld ∈ Grp ∧ ℝfld ∈ oMnd)) | |
26 | 7, 24, 25 | mpbir2an 707 | . . 3 ⊢ ℝfld ∈ oGrp |
27 | mulge0 11521 | . . . . . 6 ⊢ (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) ∧ (𝑏 ∈ ℝ ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) | |
28 | 27 | an4s 656 | . . . . 5 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) |
29 | 28 | ex 412 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) |
30 | 29 | rgen2 3188 | . . 3 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)) |
31 | re0g 20845 | . . . 4 ⊢ 0 = (0g‘ℝfld) | |
32 | remulr 20844 | . . . 4 ⊢ · = (.r‘ℝfld) | |
33 | 20, 31, 32, 22 | isorng 31526 | . . 3 ⊢ (ℝfld ∈ oRing ↔ (ℝfld ∈ Ring ∧ ℝfld ∈ oGrp ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
34 | 5, 26, 30, 33 | mpbir3an 1339 | . 2 ⊢ ℝfld ∈ oRing |
35 | isofld 31529 | . 2 ⊢ (ℝfld ∈ oField ↔ (ℝfld ∈ Field ∧ ℝfld ∈ oRing)) | |
36 | 1, 34, 35 | mpbir2an 707 | 1 ⊢ ℝfld ∈ oField |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2101 ∀wral 3059 class class class wbr 5077 (class class class)co 7295 ℝcr 10898 0cc0 10899 + caddc 10902 · cmul 10904 ≤ cle 11038 Tosetctos 18162 Mndcmnd 18413 Grpcgrp 18605 Ringcrg 19811 CRingccrg 19812 DivRingcdr 20019 Fieldcfield 20020 ℝfldcrefld 20837 oMndcomnd 31351 oGrpcogrp 31352 oRingcorng 31522 oFieldcofld 31523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-addf 10978 ax-mulf 10979 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-tpos 8062 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-0g 17180 df-proset 18041 df-poset 18059 df-plt 18076 df-toset 18163 df-ps 18312 df-tsr 18313 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-grp 18608 df-minusg 18609 df-subg 18780 df-cmn 19416 df-mgp 19749 df-ur 19766 df-ring 19813 df-cring 19814 df-oppr 19890 df-dvdsr 19911 df-unit 19912 df-invr 19942 df-dvr 19953 df-drng 20021 df-field 20022 df-subrg 20050 df-cnfld 20626 df-refld 20838 df-omnd 31353 df-ogrp 31354 df-orng 31524 df-ofld 31525 |
This theorem is referenced by: nn0omnd 31573 rearchi 31574 rerrext 31987 cnrrext 31988 |
Copyright terms: Public domain | W3C validator |