| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reofld | Structured version Visualization version GIF version | ||
| Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| reofld | ⊢ ℝfld ∈ oField |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refld 21551 | . 2 ⊢ ℝfld ∈ Field | |
| 2 | isfld 20650 | . . . . 5 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
| 3 | 2 | simplbi 497 | . . . 4 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
| 4 | drngring 20646 | . . . 4 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
| 5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ ℝfld ∈ Ring |
| 6 | ringgrp 20151 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ℝfld ∈ Grp |
| 8 | grpmnd 18848 | . . . . . 6 ⊢ (ℝfld ∈ Grp → ℝfld ∈ Mnd) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Mnd |
| 10 | retos 21550 | . . . . 5 ⊢ ℝfld ∈ Toset | |
| 11 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ∈ ℝ) | |
| 12 | simpr1 1195 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑏 ∈ ℝ) | |
| 13 | simpr2 1196 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑐 ∈ ℝ) | |
| 14 | simpr3 1197 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ≤ 𝑏) | |
| 15 | 11, 12, 13, 14 | leadd1dd 11726 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
| 16 | 15 | 3anassrs 1361 | . . . . . . . 8 ⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑎 ≤ 𝑏) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
| 17 | 16 | ex 412 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
| 18 | 17 | 3impa 1109 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
| 19 | 18 | rgen3 3177 | . . . . 5 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
| 20 | rebase 21538 | . . . . . 6 ⊢ ℝ = (Base‘ℝfld) | |
| 21 | replusg 21542 | . . . . . 6 ⊢ + = (+g‘ℝfld) | |
| 22 | rele2 21546 | . . . . . 6 ⊢ ≤ = (le‘ℝfld) | |
| 23 | 20, 21, 22 | isomnd 20030 | . . . . 5 ⊢ (ℝfld ∈ oMnd ↔ (ℝfld ∈ Mnd ∧ ℝfld ∈ Toset ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
| 24 | 9, 10, 19, 23 | mpbir3an 1342 | . . . 4 ⊢ ℝfld ∈ oMnd |
| 25 | isogrp 20031 | . . . 4 ⊢ (ℝfld ∈ oGrp ↔ (ℝfld ∈ Grp ∧ ℝfld ∈ oMnd)) | |
| 26 | 7, 24, 25 | mpbir2an 711 | . . 3 ⊢ ℝfld ∈ oGrp |
| 27 | mulge0 11630 | . . . . . 6 ⊢ (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) ∧ (𝑏 ∈ ℝ ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) | |
| 28 | 27 | an4s 660 | . . . . 5 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) |
| 29 | 28 | ex 412 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) |
| 30 | 29 | rgen2 3172 | . . 3 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)) |
| 31 | re0g 21544 | . . . 4 ⊢ 0 = (0g‘ℝfld) | |
| 32 | remulr 21543 | . . . 4 ⊢ · = (.r‘ℝfld) | |
| 33 | 20, 31, 32, 22 | isorng 20771 | . . 3 ⊢ (ℝfld ∈ oRing ↔ (ℝfld ∈ Ring ∧ ℝfld ∈ oGrp ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 34 | 5, 26, 30, 33 | mpbir3an 1342 | . 2 ⊢ ℝfld ∈ oRing |
| 35 | isofld 20774 | . 2 ⊢ (ℝfld ∈ oField ↔ (ℝfld ∈ Field ∧ ℝfld ∈ oRing)) | |
| 36 | 1, 34, 35 | mpbir2an 711 | 1 ⊢ ℝfld ∈ oField |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 + caddc 11004 · cmul 11006 ≤ cle 11142 Tosetctos 18315 Mndcmnd 18637 Grpcgrp 18841 oMndcomnd 20026 oGrpcogrp 20027 Ringcrg 20146 CRingccrg 20147 DivRingcdr 20639 Fieldcfield 20640 oRingcorng 20767 oFieldcofld 20768 ℝfldcrefld 21536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-0g 17340 df-proset 18195 df-poset 18214 df-plt 18229 df-toset 18316 df-ps 18467 df-tsr 18468 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-cmn 19689 df-abl 19690 df-omnd 20028 df-ogrp 20029 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-subrng 20456 df-subrg 20480 df-drng 20641 df-field 20642 df-orng 20769 df-ofld 20770 df-cnfld 21287 df-refld 21537 |
| This theorem is referenced by: nn0omnd 33301 rearchi 33303 rerrext 34014 cnrrext 34015 |
| Copyright terms: Public domain | W3C validator |