![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reofld | Structured version Visualization version GIF version |
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
reofld | ⊢ ℝfld ∈ oField |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 21660 | . 2 ⊢ ℝfld ∈ Field | |
2 | isfld 20762 | . . . . 5 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
3 | 2 | simplbi 497 | . . . 4 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
4 | drngring 20758 | . . . 4 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ ℝfld ∈ Ring |
6 | ringgrp 20265 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ℝfld ∈ Grp |
8 | grpmnd 18980 | . . . . . 6 ⊢ (ℝfld ∈ Grp → ℝfld ∈ Mnd) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Mnd |
10 | retos 21659 | . . . . 5 ⊢ ℝfld ∈ Toset | |
11 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ∈ ℝ) | |
12 | simpr1 1194 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑏 ∈ ℝ) | |
13 | simpr2 1195 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑐 ∈ ℝ) | |
14 | simpr3 1196 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → 𝑎 ≤ 𝑏) | |
15 | 11, 12, 13, 14 | leadd1dd 11904 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑎 ≤ 𝑏)) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
16 | 15 | 3anassrs 1360 | . . . . . . . 8 ⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑎 ≤ 𝑏) → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
17 | 16 | ex 412 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
18 | 17 | 3impa 1110 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
19 | 18 | rgen3 3210 | . . . . 5 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) |
20 | rebase 21647 | . . . . . 6 ⊢ ℝ = (Base‘ℝfld) | |
21 | replusg 21651 | . . . . . 6 ⊢ + = (+g‘ℝfld) | |
22 | rele2 21655 | . . . . . 6 ⊢ ≤ = (le‘ℝfld) | |
23 | 20, 21, 22 | isomnd 33051 | . . . . 5 ⊢ (ℝfld ∈ oMnd ↔ (ℝfld ∈ Mnd ∧ ℝfld ∈ Toset ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑐 ∈ ℝ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
24 | 9, 10, 19, 23 | mpbir3an 1341 | . . . 4 ⊢ ℝfld ∈ oMnd |
25 | isogrp 33052 | . . . 4 ⊢ (ℝfld ∈ oGrp ↔ (ℝfld ∈ Grp ∧ ℝfld ∈ oMnd)) | |
26 | 7, 24, 25 | mpbir2an 710 | . . 3 ⊢ ℝfld ∈ oGrp |
27 | mulge0 11808 | . . . . . 6 ⊢ (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) ∧ (𝑏 ∈ ℝ ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) | |
28 | 27 | an4s 659 | . . . . 5 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (0 ≤ 𝑎 ∧ 0 ≤ 𝑏)) → 0 ≤ (𝑎 · 𝑏)) |
29 | 28 | ex 412 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) |
30 | 29 | rgen2 3205 | . . 3 ⊢ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)) |
31 | re0g 21653 | . . . 4 ⊢ 0 = (0g‘ℝfld) | |
32 | remulr 21652 | . . . 4 ⊢ · = (.r‘ℝfld) | |
33 | 20, 31, 32, 22 | isorng 33294 | . . 3 ⊢ (ℝfld ∈ oRing ↔ (ℝfld ∈ Ring ∧ ℝfld ∈ oGrp ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ((0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
34 | 5, 26, 30, 33 | mpbir3an 1341 | . 2 ⊢ ℝfld ∈ oRing |
35 | isofld 33297 | . 2 ⊢ (ℝfld ∈ oField ↔ (ℝfld ∈ Field ∧ ℝfld ∈ oRing)) | |
36 | 1, 34, 35 | mpbir2an 710 | 1 ⊢ ℝfld ∈ oField |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 + caddc 11187 · cmul 11189 ≤ cle 11325 Tosetctos 18486 Mndcmnd 18772 Grpcgrp 18973 Ringcrg 20260 CRingccrg 20261 DivRingcdr 20751 Fieldcfield 20752 ℝfldcrefld 21645 oMndcomnd 33047 oGrpcogrp 33048 oRingcorng 33290 oFieldcofld 33291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-toset 18487 df-ps 18636 df-tsr 18637 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-cnfld 21388 df-refld 21646 df-omnd 33049 df-ogrp 33050 df-orng 33292 df-ofld 33293 |
This theorem is referenced by: nn0omnd 33338 rearchi 33339 rerrext 33955 cnrrext 33956 |
Copyright terms: Public domain | W3C validator |