MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngogrp Structured version   Visualization version   GIF version

Theorem orngogrp 20773
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngogrp (𝑅 ∈ oRing → 𝑅 ∈ oGrp)

Proof of Theorem orngogrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2731 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2731 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 20771 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp2bi 1146 1 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  .rcmulr 17157  lecple 17163  0gc0g 17338  oGrpcogrp 20027  Ringcrg 20146  oRingcorng 20767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-orng 20769
This theorem is referenced by:  orngsqr  20776  ornglmulle  20777  orngrmulle  20778  ofldtos  20783  suborng  20786  ofldchr  21508  isarchiofld  33160  nn0omnd  33301
  Copyright terms: Public domain W3C validator