Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngogrp Structured version   Visualization version   GIF version

Theorem orngogrp 33328
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngogrp (𝑅 ∈ oRing → 𝑅 ∈ oGrp)

Proof of Theorem orngogrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2736 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 33326 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp2bi 1146 1 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  lecple 17283  0gc0g 17458  Ringcrg 20198  oGrpcogrp 33071  oRingcorng 33322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-orng 33324
This theorem is referenced by:  orngsqr  33331  ornglmulle  33332  orngrmulle  33333  ofldtos  33338  ofldchr  33341  suborng  33342  isarchiofld  33344  nn0omnd  33365
  Copyright terms: Public domain W3C validator