![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngogrp | Structured version Visualization version GIF version |
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngogrp | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | eqid 2740 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2740 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
5 | 1, 2, 3, 4 | isorng 33294 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 lecple 17318 0gc0g 17499 Ringcrg 20260 oGrpcogrp 33048 oRingcorng 33290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-orng 33292 |
This theorem is referenced by: orngsqr 33299 ornglmulle 33300 orngrmulle 33301 ofldtos 33306 ofldchr 33309 suborng 33310 isarchiofld 33312 nn0omnd 33338 |
Copyright terms: Public domain | W3C validator |