MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngogrp Structured version   Visualization version   GIF version

Theorem orngogrp 20767
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngogrp (𝑅 ∈ oRing → 𝑅 ∈ oGrp)

Proof of Theorem orngogrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2729 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 20765 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp2bi 1146 1 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17139  .rcmulr 17181  lecple 17187  0gc0g 17362  oGrpcogrp 20018  Ringcrg 20137  oRingcorng 20761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-orng 20763
This theorem is referenced by:  orngsqr  20770  ornglmulle  20771  orngrmulle  20772  ofldtos  20777  suborng  20780  ofldchr  21502  isarchiofld  33160  nn0omnd  33301
  Copyright terms: Public domain W3C validator