MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngogrp Structured version   Visualization version   GIF version

Theorem orngogrp 20787
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngogrp (𝑅 ∈ oRing → 𝑅 ∈ oGrp)

Proof of Theorem orngogrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2733 . . 3 (le‘𝑅) = (le‘𝑅)
51, 2, 3, 4isorng 20785 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g𝑅)(le‘𝑅)𝑎 ∧ (0g𝑅)(le‘𝑅)𝑏) → (0g𝑅)(le‘𝑅)(𝑎(.r𝑅)𝑏))))
65simp2bi 1146 1 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wral 3048   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  .rcmulr 17169  lecple 17175  0gc0g 17350  oGrpcogrp 20040  Ringcrg 20159  oRingcorng 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-orng 20783
This theorem is referenced by:  orngsqr  20790  ornglmulle  20791  orngrmulle  20792  ofldtos  20797  suborng  20800  ofldchr  21522  isarchiofld  33209  nn0omnd  33353
  Copyright terms: Public domain W3C validator