| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orngogrp | Structured version Visualization version GIF version | ||
| Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| orngogrp | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2731 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
| 5 | 1, 2, 3, 4 | isorng 20771 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 lecple 17163 0gc0g 17338 oGrpcogrp 20027 Ringcrg 20146 oRingcorng 20767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-orng 20769 |
| This theorem is referenced by: orngsqr 20776 ornglmulle 20777 orngrmulle 20778 ofldtos 20783 suborng 20786 ofldchr 21508 isarchiofld 33160 nn0omnd 33301 |
| Copyright terms: Public domain | W3C validator |