Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngogrp Structured version   Visualization version   GIF version

Theorem orngogrp 32689
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
orngogrp (𝑅 ∈ oRing β†’ 𝑅 ∈ oGrp)

Proof of Theorem orngogrp
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2 eqid 2730 . . 3 (0gβ€˜π‘…) = (0gβ€˜π‘…)
3 eqid 2730 . . 3 (.rβ€˜π‘…) = (.rβ€˜π‘…)
4 eqid 2730 . . 3 (leβ€˜π‘…) = (leβ€˜π‘…)
51, 2, 3, 4isorng 32687 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ βˆ€π‘Ž ∈ (Baseβ€˜π‘…)βˆ€π‘ ∈ (Baseβ€˜π‘…)(((0gβ€˜π‘…)(leβ€˜π‘…)π‘Ž ∧ (0gβ€˜π‘…)(leβ€˜π‘…)𝑏) β†’ (0gβ€˜π‘…)(leβ€˜π‘…)(π‘Ž(.rβ€˜π‘…)𝑏))))
65simp2bi 1144 1 (𝑅 ∈ oRing β†’ 𝑅 ∈ oGrp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∈ wcel 2104  βˆ€wral 3059   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  .rcmulr 17202  lecple 17208  0gc0g 17389  Ringcrg 20127  oGrpcogrp 32486  oRingcorng 32683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-orng 32685
This theorem is referenced by:  orngsqr  32692  ornglmulle  32693  orngrmulle  32694  ofldtos  32699  ofldchr  32702  suborng  32703  isarchiofld  32705  nn0omnd  32730
  Copyright terms: Public domain W3C validator