Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngogrp | Structured version Visualization version GIF version |
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngogrp | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
5 | 1, 2, 3, 4 | isorng 31498 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
6 | 5 | simp2bi 1145 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 lecple 16969 0gc0g 17150 Ringcrg 19783 oGrpcogrp 31324 oRingcorng 31494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-orng 31496 |
This theorem is referenced by: orngsqr 31503 ornglmulle 31504 orngrmulle 31505 ofldtos 31510 ofldchr 31513 suborng 31514 isarchiofld 31516 nn0omnd 31545 |
Copyright terms: Public domain | W3C validator |