| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orngogrp | Structured version Visualization version GIF version | ||
| Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| orngogrp | ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2736 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2736 | . . 3 ⊢ (le‘𝑅) = (le‘𝑅) | |
| 5 | 1, 2, 3, 4 | isorng 33330 | . 2 ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ (Base‘𝑅)∀𝑏 ∈ (Base‘𝑅)(((0g‘𝑅)(le‘𝑅)𝑎 ∧ (0g‘𝑅)(le‘𝑅)𝑏) → (0g‘𝑅)(le‘𝑅)(𝑎(.r‘𝑅)𝑏)))) |
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 .rcmulr 17299 lecple 17305 0gc0g 17485 Ringcrg 20231 oGrpcogrp 33076 oRingcorng 33326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-orng 33328 |
| This theorem is referenced by: orngsqr 33335 ornglmulle 33336 orngrmulle 33337 ofldtos 33342 ofldchr 33345 suborng 33346 isarchiofld 33348 nn0omnd 33374 |
| Copyright terms: Public domain | W3C validator |