![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orngogrp | Structured version Visualization version GIF version |
Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
orngogrp | β’ (π β oRing β π β oGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2730 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
3 | eqid 2730 | . . 3 β’ (.rβπ ) = (.rβπ ) | |
4 | eqid 2730 | . . 3 β’ (leβπ ) = (leβπ ) | |
5 | 1, 2, 3, 4 | isorng 32687 | . 2 β’ (π β oRing β (π β Ring β§ π β oGrp β§ βπ β (Baseβπ )βπ β (Baseβπ )(((0gβπ )(leβπ )π β§ (0gβπ )(leβπ )π) β (0gβπ )(leβπ )(π(.rβπ )π)))) |
6 | 5 | simp2bi 1144 | 1 β’ (π β oRing β π β oGrp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2104 βwral 3059 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 .rcmulr 17202 lecple 17208 0gc0g 17389 Ringcrg 20127 oGrpcogrp 32486 oRingcorng 32683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-orng 32685 |
This theorem is referenced by: orngsqr 32692 ornglmulle 32693 orngrmulle 32694 ofldtos 32699 ofldchr 32702 suborng 32703 isarchiofld 32705 nn0omnd 32730 |
Copyright terms: Public domain | W3C validator |