Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchiofld Structured version   Visualization version   GIF version

Theorem isarchiofld 31418
Description: Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
isarchiofld.b 𝐵 = (Base‘𝑊)
isarchiofld.h 𝐻 = (ℤRHom‘𝑊)
isarchiofld.l < = (lt‘𝑊)
Assertion
Ref Expression
isarchiofld (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑊,𝑥   𝑥,𝐻   < ,𝑛,𝑥
Allowed substitution hint:   𝐻(𝑛)

Proof of Theorem isarchiofld
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isofld 31403 . . . 4 (𝑊 ∈ oField ↔ (𝑊 ∈ Field ∧ 𝑊 ∈ oRing))
21simprbi 496 . . 3 (𝑊 ∈ oField → 𝑊 ∈ oRing)
3 orngogrp 31402 . . 3 (𝑊 ∈ oRing → 𝑊 ∈ oGrp)
4 isarchiofld.b . . . 4 𝐵 = (Base‘𝑊)
5 eqid 2738 . . . 4 (0g𝑊) = (0g𝑊)
6 isarchiofld.l . . . 4 < = (lt‘𝑊)
7 eqid 2738 . . . 4 (.g𝑊) = (.g𝑊)
84, 5, 6, 7isarchi3 31343 . . 3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
92, 3, 83syl 18 . 2 (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
10 orngring 31401 . . . . . . 7 (𝑊 ∈ oRing → 𝑊 ∈ Ring)
11 eqid 2738 . . . . . . . 8 (1r𝑊) = (1r𝑊)
124, 11ringidcl 19722 . . . . . . 7 (𝑊 ∈ Ring → (1r𝑊) ∈ 𝐵)
132, 10, 123syl 18 . . . . . 6 (𝑊 ∈ oField → (1r𝑊) ∈ 𝐵)
14 breq2 5074 . . . . . . . . 9 (𝑦 = (1r𝑊) → ((0g𝑊) < 𝑦 ↔ (0g𝑊) < (1r𝑊)))
15 oveq2 7263 . . . . . . . . . . 11 (𝑦 = (1r𝑊) → (𝑛(.g𝑊)𝑦) = (𝑛(.g𝑊)(1r𝑊)))
1615breq2d 5082 . . . . . . . . . 10 (𝑦 = (1r𝑊) → (𝑥 < (𝑛(.g𝑊)𝑦) ↔ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
1716rexbidv 3225 . . . . . . . . 9 (𝑦 = (1r𝑊) → (∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
1814, 17imbi12d 344 . . . . . . . 8 (𝑦 = (1r𝑊) → (((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
1918ralbidv 3120 . . . . . . 7 (𝑦 = (1r𝑊) → (∀𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
2019rspcv 3547 . . . . . 6 ((1r𝑊) ∈ 𝐵 → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
2113, 20syl 17 . . . . 5 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
225, 11, 6ofldlt1 31414 . . . . . . 7 (𝑊 ∈ oField → (0g𝑊) < (1r𝑊))
23 pm5.5 361 . . . . . . 7 ((0g𝑊) < (1r𝑊) → (((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2422, 23syl 17 . . . . . 6 (𝑊 ∈ oField → (((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2524ralbidv 3120 . . . . 5 (𝑊 ∈ oField → (∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2621, 25sylibd 238 . . . 4 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
272, 10syl 17 . . . . . . . 8 (𝑊 ∈ oField → 𝑊 ∈ Ring)
28 nnz 12272 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
29 isarchiofld.h . . . . . . . . 9 𝐻 = (ℤRHom‘𝑊)
3029, 7, 11zrhmulg 20623 . . . . . . . 8 ((𝑊 ∈ Ring ∧ 𝑛 ∈ ℤ) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
3127, 28, 30syl2an 595 . . . . . . 7 ((𝑊 ∈ oField ∧ 𝑛 ∈ ℕ) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
3231breq2d 5082 . . . . . 6 ((𝑊 ∈ oField ∧ 𝑛 ∈ ℕ) → (𝑥 < (𝐻𝑛) ↔ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3332rexbidva 3224 . . . . 5 (𝑊 ∈ oField → (∃𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3433ralbidv 3120 . . . 4 (𝑊 ∈ oField → (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3526, 34sylibrd 258 . . 3 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
36 nfv 1918 . . . . . . . 8 𝑥 𝑊 ∈ oField
37 nfra1 3142 . . . . . . . 8 𝑥𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)
3836, 37nfan 1903 . . . . . . 7 𝑥(𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛))
39 nfv 1918 . . . . . . 7 𝑥 𝑦𝐵
4038, 39nfan 1903 . . . . . 6 𝑥((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵)
4127ad3antrrr 726 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑊 ∈ Ring)
42 simplrr 774 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑥𝐵)
43 simplrl 773 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦𝐵)
44 simpr 484 . . . . . . . . . . . . . 14 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) < 𝑦)
45 simplll 771 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑊 ∈ oField)
46 ringgrp 19703 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
474, 5grpidcl 18522 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝐵)
4841, 46, 473syl 18 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) ∈ 𝐵)
496pltne 17967 . . . . . . . . . . . . . . 15 ((𝑊 ∈ oField ∧ (0g𝑊) ∈ 𝐵𝑦𝐵) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
5045, 48, 43, 49syl3anc 1369 . . . . . . . . . . . . . 14 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
5144, 50mpd 15 . . . . . . . . . . . . 13 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) ≠ 𝑦)
5251necomd 2998 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦 ≠ (0g𝑊))
531simplbi 497 . . . . . . . . . . . . . 14 (𝑊 ∈ oField → 𝑊 ∈ Field)
54 isfld 19915 . . . . . . . . . . . . . . 15 (𝑊 ∈ Field ↔ (𝑊 ∈ DivRing ∧ 𝑊 ∈ CRing))
5554simplbi 497 . . . . . . . . . . . . . 14 (𝑊 ∈ Field → 𝑊 ∈ DivRing)
5653, 55syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ oField → 𝑊 ∈ DivRing)
57 eqid 2738 . . . . . . . . . . . . . 14 (Unit‘𝑊) = (Unit‘𝑊)
584, 57, 5drngunit 19911 . . . . . . . . . . . . 13 (𝑊 ∈ DivRing → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
5945, 56, 583syl 18 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
6043, 52, 59mpbir2and 709 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦 ∈ (Unit‘𝑊))
61 eqid 2738 . . . . . . . . . . . 12 (/r𝑊) = (/r𝑊)
624, 57, 61dvrcl 19843 . . . . . . . . . . 11 ((𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ (Unit‘𝑊)) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
6341, 42, 60, 62syl3anc 1369 . . . . . . . . . 10 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
64 simpr 484 . . . . . . . . . . . 12 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛))
65 breq1 5073 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 < (𝐻𝑛) ↔ 𝑧 < (𝐻𝑛)))
6665rexbidv 3225 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 < (𝐻𝑛)))
6766cbvralvw 3372 . . . . . . . . . . . 12 (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
6864, 67sylib 217 . . . . . . . . . . 11 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
6968ad2antrr 722 . . . . . . . . . 10 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
70 breq1 5073 . . . . . . . . . . . 12 (𝑧 = (𝑥(/r𝑊)𝑦) → (𝑧 < (𝐻𝑛) ↔ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7170rexbidv 3225 . . . . . . . . . . 11 (𝑧 = (𝑥(/r𝑊)𝑦) → (∃𝑛 ∈ ℕ 𝑧 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7271rspcv 3547 . . . . . . . . . 10 ((𝑥(/r𝑊)𝑦) ∈ 𝐵 → (∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛) → ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7363, 69, 72sylc 65 . . . . . . . . 9 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛))
74 eqid 2738 . . . . . . . . . . . . . 14 (.r𝑊) = (.r𝑊)
75 simp-4l 779 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ oField)
7675, 2syl 17 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ oRing)
7775, 27syl 17 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ Ring)
78 simp-4r 780 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑦𝐵𝑥𝐵))
7978simprd 495 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑥𝐵)
8078simpld 494 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦𝐵)
81 simpllr 772 . . . . . . . . . . . . . . . . . 18 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) < 𝑦)
8277, 46, 473syl 18 . . . . . . . . . . . . . . . . . . 19 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) ∈ 𝐵)
8375, 82, 80, 49syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
8481, 83mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) ≠ 𝑦)
8584necomd 2998 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦 ≠ (0g𝑊))
8675, 56, 583syl 18 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
8780, 85, 86mpbir2and 709 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦 ∈ (Unit‘𝑊))
8877, 79, 87, 62syl3anc 1369 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
89 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑛 ∈ ℕ)
9075, 89, 31syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
9177, 46syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ Grp)
9289, 28syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑛 ∈ ℤ)
9377, 12syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (1r𝑊) ∈ 𝐵)
944, 7mulgcl 18636 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ (1r𝑊) ∈ 𝐵) → (𝑛(.g𝑊)(1r𝑊)) ∈ 𝐵)
9591, 92, 93, 94syl3anc 1369 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑛(.g𝑊)(1r𝑊)) ∈ 𝐵)
9690, 95eqeltrd 2839 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝐻𝑛) ∈ 𝐵)
9775, 56syl 17 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ DivRing)
98 simpr 484 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑥(/r𝑊)𝑦) < (𝐻𝑛))
994, 74, 5, 76, 88, 96, 80, 6, 97, 98, 81orngrmullt 31409 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) < ((𝐻𝑛)(.r𝑊)𝑦))
1004, 57, 61, 74dvrcan1 19848 . . . . . . . . . . . . . 14 ((𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ (Unit‘𝑊)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) = 𝑥)
10177, 79, 87, 100syl3anc 1369 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) = 𝑥)
10290oveq1d 7270 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝐻𝑛)(.r𝑊)𝑦) = ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦))
1034, 7, 74mulgass2 19755 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Ring ∧ (𝑛 ∈ ℤ ∧ (1r𝑊) ∈ 𝐵𝑦𝐵)) → ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦) = (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)))
10477, 92, 93, 80, 103syl13anc 1370 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦) = (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)))
1054, 74, 11ringlidm 19725 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑊)(.r𝑊)𝑦) = 𝑦)
10677, 80, 105syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((1r𝑊)(.r𝑊)𝑦) = 𝑦)
107106oveq2d 7271 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)) = (𝑛(.g𝑊)𝑦))
108102, 104, 1073eqtrd 2782 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝐻𝑛)(.r𝑊)𝑦) = (𝑛(.g𝑊)𝑦))
10999, 101, 1083brtr3d 5101 . . . . . . . . . . . 12 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑥 < (𝑛(.g𝑊)𝑦))
110109ex 412 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) → ((𝑥(/r𝑊)𝑦) < (𝐻𝑛) → 𝑥 < (𝑛(.g𝑊)𝑦)))
111110reximdva 3202 . . . . . . . . . 10 (((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
112111adantllr 715 . . . . . . . . 9 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
11373, 112mpd 15 . . . . . . . 8 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))
114113ex 412 . . . . . . 7 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) → ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
115114expr 456 . . . . . 6 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵) → (𝑥𝐵 → ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
11640, 115ralrimi 3139 . . . . 5 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵) → ∀𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
117116ralrimiva 3107 . . . 4 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
118117ex 412 . . 3 (𝑊 ∈ oField → (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) → ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
11935, 118impbid 211 . 2 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
1209, 119bitrd 278 1 (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cn 11903  cz 12249  Basecbs 16840  .rcmulr 16889  0gc0g 17067  ltcplt 17941  Grpcgrp 18492  .gcmg 18615  1rcur 19652  Ringcrg 19698  CRingccrg 19699  Unitcui 19796  /rcdvr 19839  DivRingcdr 19906  Fieldcfield 19907  ℤRHomczrh 20613  oGrpcogrp 31226  Archicarchi 31333  oRingcorng 31396  oFieldcofld 31397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-toset 18050  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-omnd 31227  df-ogrp 31228  df-inftm 31334  df-archi 31335  df-orng 31398  df-ofld 31399
This theorem is referenced by:  rearchi  31448
  Copyright terms: Public domain W3C validator