Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngmul Structured version   Visualization version   GIF version

Theorem orngmul 31175
Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0 𝐵 = (Base‘𝑅)
orngmul.1 = (le‘𝑅)
orngmul.2 0 = (0g𝑅)
orngmul.3 · = (.r𝑅)
Assertion
Ref Expression
orngmul ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))

Proof of Theorem orngmul
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1202 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑋)
2 simp3r 1204 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑌)
3 simp2l 1201 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑋𝐵)
4 simp3l 1203 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑌𝐵)
5 orngmul.0 . . . . . 6 𝐵 = (Base‘𝑅)
6 orngmul.2 . . . . . 6 0 = (0g𝑅)
7 orngmul.3 . . . . . 6 · = (.r𝑅)
8 orngmul.1 . . . . . 6 = (le‘𝑅)
95, 6, 7, 8isorng 31171 . . . . 5 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
109simp3bi 1149 . . . 4 (𝑅 ∈ oRing → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
11103ad2ant1 1135 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
12 breq2 5043 . . . . . 6 (𝑎 = 𝑋 → ( 0 𝑎0 𝑋))
1312anbi1d 633 . . . . 5 (𝑎 = 𝑋 → (( 0 𝑎0 𝑏) ↔ ( 0 𝑋0 𝑏)))
14 oveq1 7198 . . . . . 6 (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏))
1514breq2d 5051 . . . . 5 (𝑎 = 𝑋 → ( 0 (𝑎 · 𝑏) ↔ 0 (𝑋 · 𝑏)))
1613, 15imbi12d 348 . . . 4 (𝑎 = 𝑋 → ((( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)) ↔ (( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏))))
17 breq2 5043 . . . . . 6 (𝑏 = 𝑌 → ( 0 𝑏0 𝑌))
1817anbi2d 632 . . . . 5 (𝑏 = 𝑌 → (( 0 𝑋0 𝑏) ↔ ( 0 𝑋0 𝑌)))
19 oveq2 7199 . . . . . 6 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
2019breq2d 5051 . . . . 5 (𝑏 = 𝑌 → ( 0 (𝑋 · 𝑏) ↔ 0 (𝑋 · 𝑌)))
2118, 20imbi12d 348 . . . 4 (𝑏 = 𝑌 → ((( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏)) ↔ (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌))))
2216, 21rspc2va 3538 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
233, 4, 11, 22syl21anc 838 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
241, 2, 23mp2and 699 1 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  .rcmulr 16750  lecple 16756  0gc0g 16898  Ringcrg 19516  oGrpcogrp 30997  oRingcorng 31167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-iota 6316  df-fv 6366  df-ov 7194  df-orng 31169
This theorem is referenced by:  orngsqr  31176  ornglmulle  31177  orngrmulle  31178  orngmullt  31181  suborng  31187
  Copyright terms: Public domain W3C validator