MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngmul Structured version   Visualization version   GIF version

Theorem orngmul 20768
Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0 𝐵 = (Base‘𝑅)
orngmul.1 = (le‘𝑅)
orngmul.2 0 = (0g𝑅)
orngmul.3 · = (.r𝑅)
Assertion
Ref Expression
orngmul ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))

Proof of Theorem orngmul
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1201 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑋)
2 simp3r 1203 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑌)
3 simp2l 1200 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑋𝐵)
4 simp3l 1202 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑌𝐵)
5 orngmul.0 . . . . . 6 𝐵 = (Base‘𝑅)
6 orngmul.2 . . . . . 6 0 = (0g𝑅)
7 orngmul.3 . . . . . 6 · = (.r𝑅)
8 orngmul.1 . . . . . 6 = (le‘𝑅)
95, 6, 7, 8isorng 20764 . . . . 5 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
109simp3bi 1147 . . . 4 (𝑅 ∈ oRing → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
11103ad2ant1 1133 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
12 breq2 5099 . . . . . 6 (𝑎 = 𝑋 → ( 0 𝑎0 𝑋))
1312anbi1d 631 . . . . 5 (𝑎 = 𝑋 → (( 0 𝑎0 𝑏) ↔ ( 0 𝑋0 𝑏)))
14 oveq1 7360 . . . . . 6 (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏))
1514breq2d 5107 . . . . 5 (𝑎 = 𝑋 → ( 0 (𝑎 · 𝑏) ↔ 0 (𝑋 · 𝑏)))
1613, 15imbi12d 344 . . . 4 (𝑎 = 𝑋 → ((( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)) ↔ (( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏))))
17 breq2 5099 . . . . . 6 (𝑏 = 𝑌 → ( 0 𝑏0 𝑌))
1817anbi2d 630 . . . . 5 (𝑏 = 𝑌 → (( 0 𝑋0 𝑏) ↔ ( 0 𝑋0 𝑌)))
19 oveq2 7361 . . . . . 6 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
2019breq2d 5107 . . . . 5 (𝑏 = 𝑌 → ( 0 (𝑋 · 𝑏) ↔ 0 (𝑋 · 𝑌)))
2118, 20imbi12d 344 . . . 4 (𝑏 = 𝑌 → ((( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏)) ↔ (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌))))
2216, 21rspc2va 3591 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
233, 4, 11, 22syl21anc 837 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
241, 2, 23mp2and 699 1 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  lecple 17186  0gc0g 17361  oGrpcogrp 20017  Ringcrg 20136  oRingcorng 20760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-orng 20762
This theorem is referenced by:  orngsqr  20769  ornglmulle  20770  orngrmulle  20771  orngmullt  20774  suborng  20779
  Copyright terms: Public domain W3C validator