Step | Hyp | Ref
| Expression |
1 | | simp2r 1198 |
. 2
⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 0 ≤ 𝑋) |
2 | | simp3r 1200 |
. 2
⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 0 ≤ 𝑌) |
3 | | simp2l 1197 |
. . 3
⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 𝑋 ∈ 𝐵) |
4 | | simp3l 1199 |
. . 3
⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 𝑌 ∈ 𝐵) |
5 | | orngmul.0 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
6 | | orngmul.2 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
7 | | orngmul.3 |
. . . . . 6
⊢ · =
(.r‘𝑅) |
8 | | orngmul.1 |
. . . . . 6
⊢ ≤ =
(le‘𝑅) |
9 | 5, 6, 7, 8 | isorng 31400 |
. . . . 5
⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
10 | 9 | simp3bi 1145 |
. . . 4
⊢ (𝑅 ∈ oRing →
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) |
11 | 10 | 3ad2ant1 1131 |
. . 3
⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) |
12 | | breq2 5074 |
. . . . . 6
⊢ (𝑎 = 𝑋 → ( 0 ≤ 𝑎 ↔ 0 ≤ 𝑋)) |
13 | 12 | anbi1d 629 |
. . . . 5
⊢ (𝑎 = 𝑋 → (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) ↔ ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏))) |
14 | | oveq1 7262 |
. . . . . 6
⊢ (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏)) |
15 | 14 | breq2d 5082 |
. . . . 5
⊢ (𝑎 = 𝑋 → ( 0 ≤ (𝑎 · 𝑏) ↔ 0 ≤ (𝑋 · 𝑏))) |
16 | 13, 15 | imbi12d 344 |
. . . 4
⊢ (𝑎 = 𝑋 → ((( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)) ↔ (( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑋 · 𝑏)))) |
17 | | breq2 5074 |
. . . . . 6
⊢ (𝑏 = 𝑌 → ( 0 ≤ 𝑏 ↔ 0 ≤ 𝑌)) |
18 | 17 | anbi2d 628 |
. . . . 5
⊢ (𝑏 = 𝑌 → (( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏) ↔ ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌))) |
19 | | oveq2 7263 |
. . . . . 6
⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) |
20 | 19 | breq2d 5082 |
. . . . 5
⊢ (𝑏 = 𝑌 → ( 0 ≤ (𝑋 · 𝑏) ↔ 0 ≤ (𝑋 · 𝑌))) |
21 | 18, 20 | imbi12d 344 |
. . . 4
⊢ (𝑏 = 𝑌 → ((( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑋 · 𝑏)) ↔ (( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌) → 0 ≤ (𝑋 · 𝑌)))) |
22 | 16, 21 | rspc2va 3563 |
. . 3
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) → (( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌) → 0 ≤ (𝑋 · 𝑌))) |
23 | 3, 4, 11, 22 | syl21anc 834 |
. 2
⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → (( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌) → 0 ≤ (𝑋 · 𝑌))) |
24 | 1, 2, 23 | mp2and 695 |
1
⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 0 ≤ (𝑋 · 𝑌)) |