Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngmul Structured version   Visualization version   GIF version

Theorem orngmul 31404
Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0 𝐵 = (Base‘𝑅)
orngmul.1 = (le‘𝑅)
orngmul.2 0 = (0g𝑅)
orngmul.3 · = (.r𝑅)
Assertion
Ref Expression
orngmul ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))

Proof of Theorem orngmul
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1198 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑋)
2 simp3r 1200 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑌)
3 simp2l 1197 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑋𝐵)
4 simp3l 1199 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑌𝐵)
5 orngmul.0 . . . . . 6 𝐵 = (Base‘𝑅)
6 orngmul.2 . . . . . 6 0 = (0g𝑅)
7 orngmul.3 . . . . . 6 · = (.r𝑅)
8 orngmul.1 . . . . . 6 = (le‘𝑅)
95, 6, 7, 8isorng 31400 . . . . 5 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
109simp3bi 1145 . . . 4 (𝑅 ∈ oRing → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
11103ad2ant1 1131 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
12 breq2 5074 . . . . . 6 (𝑎 = 𝑋 → ( 0 𝑎0 𝑋))
1312anbi1d 629 . . . . 5 (𝑎 = 𝑋 → (( 0 𝑎0 𝑏) ↔ ( 0 𝑋0 𝑏)))
14 oveq1 7262 . . . . . 6 (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏))
1514breq2d 5082 . . . . 5 (𝑎 = 𝑋 → ( 0 (𝑎 · 𝑏) ↔ 0 (𝑋 · 𝑏)))
1613, 15imbi12d 344 . . . 4 (𝑎 = 𝑋 → ((( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)) ↔ (( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏))))
17 breq2 5074 . . . . . 6 (𝑏 = 𝑌 → ( 0 𝑏0 𝑌))
1817anbi2d 628 . . . . 5 (𝑏 = 𝑌 → (( 0 𝑋0 𝑏) ↔ ( 0 𝑋0 𝑌)))
19 oveq2 7263 . . . . . 6 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
2019breq2d 5082 . . . . 5 (𝑏 = 𝑌 → ( 0 (𝑋 · 𝑏) ↔ 0 (𝑋 · 𝑌)))
2118, 20imbi12d 344 . . . 4 (𝑏 = 𝑌 → ((( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏)) ↔ (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌))))
2216, 21rspc2va 3563 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
233, 4, 11, 22syl21anc 834 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
241, 2, 23mp2and 695 1 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  lecple 16895  0gc0g 17067  Ringcrg 19698  oGrpcogrp 31226  oRingcorng 31396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-orng 31398
This theorem is referenced by:  orngsqr  31405  ornglmulle  31406  orngrmulle  31407  orngmullt  31410  suborng  31416
  Copyright terms: Public domain W3C validator