MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orngmul Structured version   Visualization version   GIF version

Theorem orngmul 20773
Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
orngmul.0 𝐵 = (Base‘𝑅)
orngmul.1 = (le‘𝑅)
orngmul.2 0 = (0g𝑅)
orngmul.3 · = (.r𝑅)
Assertion
Ref Expression
orngmul ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))

Proof of Theorem orngmul
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2r 1201 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑋)
2 simp3r 1203 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 𝑌)
3 simp2l 1200 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑋𝐵)
4 simp3l 1202 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 𝑌𝐵)
5 orngmul.0 . . . . . 6 𝐵 = (Base‘𝑅)
6 orngmul.2 . . . . . 6 0 = (0g𝑅)
7 orngmul.3 . . . . . 6 · = (.r𝑅)
8 orngmul.1 . . . . . 6 = (le‘𝑅)
95, 6, 7, 8isorng 20769 . . . . 5 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
109simp3bi 1147 . . . 4 (𝑅 ∈ oRing → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
11103ad2ant1 1133 . . 3 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)))
12 breq2 5093 . . . . . 6 (𝑎 = 𝑋 → ( 0 𝑎0 𝑋))
1312anbi1d 631 . . . . 5 (𝑎 = 𝑋 → (( 0 𝑎0 𝑏) ↔ ( 0 𝑋0 𝑏)))
14 oveq1 7348 . . . . . 6 (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏))
1514breq2d 5101 . . . . 5 (𝑎 = 𝑋 → ( 0 (𝑎 · 𝑏) ↔ 0 (𝑋 · 𝑏)))
1613, 15imbi12d 344 . . . 4 (𝑎 = 𝑋 → ((( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏)) ↔ (( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏))))
17 breq2 5093 . . . . . 6 (𝑏 = 𝑌 → ( 0 𝑏0 𝑌))
1817anbi2d 630 . . . . 5 (𝑏 = 𝑌 → (( 0 𝑋0 𝑏) ↔ ( 0 𝑋0 𝑌)))
19 oveq2 7349 . . . . . 6 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
2019breq2d 5101 . . . . 5 (𝑏 = 𝑌 → ( 0 (𝑋 · 𝑏) ↔ 0 (𝑋 · 𝑌)))
2118, 20imbi12d 344 . . . 4 (𝑏 = 𝑌 → ((( 0 𝑋0 𝑏) → 0 (𝑋 · 𝑏)) ↔ (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌))))
2216, 21rspc2va 3587 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
233, 4, 11, 22syl21anc 837 . 2 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → (( 0 𝑋0 𝑌) → 0 (𝑋 · 𝑌)))
241, 2, 23mp2and 699 1 ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  .rcmulr 17154  lecple 17160  0gc0g 17335  oGrpcogrp 20025  Ringcrg 20144  oRingcorng 20765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-ov 7344  df-orng 20767
This theorem is referenced by:  orngsqr  20774  ornglmulle  20775  orngrmulle  20776  orngmullt  20779  suborng  20784
  Copyright terms: Public domain W3C validator