Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subofld Structured version   Visualization version   GIF version

Theorem subofld 32429
Description: Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
subofld ((𝐹 ∈ oField ∧ (𝐹s 𝐴) ∈ Field) → (𝐹s 𝐴) ∈ oField)

Proof of Theorem subofld
StepHypRef Expression
1 simpr 485 . 2 ((𝐹 ∈ oField ∧ (𝐹s 𝐴) ∈ Field) → (𝐹s 𝐴) ∈ Field)
2 isofld 32415 . . . . 5 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
32simprbi 497 . . . 4 (𝐹 ∈ oField → 𝐹 ∈ oRing)
43adantr 481 . . 3 ((𝐹 ∈ oField ∧ (𝐹s 𝐴) ∈ Field) → 𝐹 ∈ oRing)
5 isfld 20367 . . . . 5 ((𝐹s 𝐴) ∈ Field ↔ ((𝐹s 𝐴) ∈ DivRing ∧ (𝐹s 𝐴) ∈ CRing))
65simprbi 497 . . . 4 ((𝐹s 𝐴) ∈ Field → (𝐹s 𝐴) ∈ CRing)
7 crngring 20067 . . . 4 ((𝐹s 𝐴) ∈ CRing → (𝐹s 𝐴) ∈ Ring)
81, 6, 73syl 18 . . 3 ((𝐹 ∈ oField ∧ (𝐹s 𝐴) ∈ Field) → (𝐹s 𝐴) ∈ Ring)
9 suborng 32428 . . 3 ((𝐹 ∈ oRing ∧ (𝐹s 𝐴) ∈ Ring) → (𝐹s 𝐴) ∈ oRing)
104, 8, 9syl2anc 584 . 2 ((𝐹 ∈ oField ∧ (𝐹s 𝐴) ∈ Field) → (𝐹s 𝐴) ∈ oRing)
11 isofld 32415 . 2 ((𝐹s 𝐴) ∈ oField ↔ ((𝐹s 𝐴) ∈ Field ∧ (𝐹s 𝐴) ∈ oRing))
121, 10, 11sylanbrc 583 1 ((𝐹 ∈ oField ∧ (𝐹s 𝐴) ∈ Field) → (𝐹s 𝐴) ∈ oField)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  (class class class)co 7408  s cress 17172  Ringcrg 20055  CRingccrg 20056  DivRingcdr 20356  Fieldcfield 20357  oRingcorng 32408  oFieldcofld 32409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-dec 12677  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-ple 17216  df-0g 17386  df-poset 18265  df-toset 18369  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-subg 19002  df-mgp 19987  df-ur 20004  df-ring 20057  df-cring 20058  df-field 20359  df-omnd 32212  df-ogrp 32213  df-orng 32410  df-ofld 32411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator