MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispligb Structured version   Visualization version   GIF version

Theorem ispligb 30235
Description: The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
isplig.1 𝑃 = 𝐺
Assertion
Ref Expression
ispligb (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑙,𝐺   𝑃,𝑎,𝑏,𝑐
Allowed substitution hint:   𝑃(𝑙)

Proof of Theorem ispligb
StepHypRef Expression
1 elex 3487 . 2 (𝐺 ∈ Plig → 𝐺 ∈ V)
2 isplig.1 . . 3 𝑃 = 𝐺
32isplig 30234 . 2 (𝐺 ∈ V → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
41, 3biadanii 819 1 (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  ∃!wreu 3368  Vcvv 3468   cuni 4902  Pligcplig 30232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-v 3470  df-in 3950  df-ss 3960  df-uni 4903  df-plig 30233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator