MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispligb Structured version   Visualization version   GIF version

Theorem ispligb 30506
Description: The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
isplig.1 𝑃 = 𝐺
Assertion
Ref Expression
ispligb (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑙,𝐺   𝑃,𝑎,𝑏,𝑐
Allowed substitution hint:   𝑃(𝑙)

Proof of Theorem ispligb
StepHypRef Expression
1 elex 3499 . 2 (𝐺 ∈ Plig → 𝐺 ∈ V)
2 isplig.1 . . 3 𝑃 = 𝐺
32isplig 30505 . 2 (𝐺 ∈ V → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
41, 3biadanii 822 1 (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  ∃!wreu 3376  Vcvv 3478   cuni 4912  Pligcplig 30503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-v 3480  df-ss 3980  df-uni 4913  df-plig 30504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator