![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tncp | Structured version Visualization version GIF version |
Description: In any planar incidence geometry, there exist three non-collinear points. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
tncp.1 | ⊢ 𝑃 = ∪ 𝐺 |
Ref | Expression |
---|---|
tncp | ⊢ (𝐺 ∈ Plig → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tncp.1 | . . . 4 ⊢ 𝑃 = ∪ 𝐺 | |
2 | 1 | isplig 30201 | . . 3 ⊢ (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) |
3 | 2 | ibi 267 | . 2 ⊢ (𝐺 ∈ Plig → (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))) |
4 | 3 | simp3d 1141 | 1 ⊢ (𝐺 ∈ Plig → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 ∃!wreu 3366 ∪ cuni 4900 Pligcplig 30199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-v 3468 df-in 3948 df-ss 3958 df-uni 4901 df-plig 30200 |
This theorem is referenced by: lpni 30205 |
Copyright terms: Public domain | W3C validator |