MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemappo Structured version   Visualization version   GIF version

Theorem wemappo 9352
Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values.

Without totality on the values or least differing indices, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by AV, 21-Jul-2024.)

Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemappo ((𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵m 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemappo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 774 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → 𝑆 Po 𝐵)
2 elmapi 8668 . . . . . . . 8 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
32adantl 483 . . . . . . 7 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) → 𝑎:𝐴𝐵)
43ffvelcdmda 6993 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → (𝑎𝑏) ∈ 𝐵)
5 poirr 5526 . . . . . 6 ((𝑆 Po 𝐵 ∧ (𝑎𝑏) ∈ 𝐵) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
61, 4, 5syl2anc 585 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
76intnanrd 491 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → ¬ ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
87nrexdv 3143 . . 3 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) → ¬ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
9 wemapso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
109wemaplem1 9349 . . . 4 ((𝑎 ∈ V ∧ 𝑎 ∈ V) → (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐)))))
1110el2v 3445 . . 3 (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
128, 11sylnibr 329 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) → ¬ 𝑎𝑇𝑎)
13 simplr1 1215 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎 ∈ (𝐵m 𝐴))
14 simplr2 1216 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏 ∈ (𝐵m 𝐴))
15 simplr3 1217 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑐 ∈ (𝐵m 𝐴))
16 simplll 773 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑅 Or 𝐴)
17 simpllr 774 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑆 Po 𝐵)
18 simprl 769 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑏)
19 simprr 771 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏𝑇𝑐)
209, 13, 14, 15, 16, 17, 18, 19wemaplem3 9351 . . 3 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑐)
2120ex 414 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐))
2212, 21ispod 5523 1 ((𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  wrex 3071  Vcvv 3437   class class class wbr 5081  {copab 5143   Po wpo 5512   Or wor 5513  wf 6454  cfv 6458  (class class class)co 7307  m cmap 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-map 8648
This theorem is referenced by:  wemapsolem  9353
  Copyright terms: Public domain W3C validator