MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemappo Structured version   Visualization version   GIF version

Theorem wemappo 9435
Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values.

Without totality on the values or least differing indices, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by AV, 21-Jul-2024.)

Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemappo ((𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵m 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemappo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → 𝑆 Po 𝐵)
2 elmapi 8773 . . . . . . . 8 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
32adantl 481 . . . . . . 7 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) → 𝑎:𝐴𝐵)
43ffvelcdmda 7017 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → (𝑎𝑏) ∈ 𝐵)
5 poirr 5536 . . . . . 6 ((𝑆 Po 𝐵 ∧ (𝑎𝑏) ∈ 𝐵) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
61, 4, 5syl2anc 584 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
76intnanrd 489 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) ∧ 𝑏𝐴) → ¬ ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
87nrexdv 3127 . . 3 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) → ¬ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
9 wemapso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
109wemaplem1 9432 . . . 4 ((𝑎 ∈ V ∧ 𝑎 ∈ V) → (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐)))))
1110el2v 3443 . . 3 (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
128, 11sylnibr 329 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵m 𝐴)) → ¬ 𝑎𝑇𝑎)
13 simplr1 1216 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎 ∈ (𝐵m 𝐴))
14 simplr2 1217 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏 ∈ (𝐵m 𝐴))
15 simplr3 1218 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑐 ∈ (𝐵m 𝐴))
16 simplll 774 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑅 Or 𝐴)
17 simpllr 775 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑆 Po 𝐵)
18 simprl 770 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑏)
19 simprr 772 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏𝑇𝑐)
209, 13, 14, 15, 16, 17, 18, 19wemaplem3 9434 . . 3 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑐)
2120ex 412 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴) ∧ 𝑐 ∈ (𝐵m 𝐴))) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐))
2212, 21ispod 5533 1 ((𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5091  {copab 5153   Po wpo 5522   Or wor 5523  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752
This theorem is referenced by:  wemapsolem  9436
  Copyright terms: Public domain W3C validator