![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swopolem | Structured version Visualization version GIF version |
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
swopolem.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
swopolem | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swopolem.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | |
2 | 1 | ralrimivvva 3203 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
3 | breq1 5151 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
4 | breq1 5151 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑧 ↔ 𝑋𝑅𝑧)) | |
5 | 4 | orbi1d 916 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
7 | breq2 5152 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
8 | breq2 5152 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑌)) | |
9 | 8 | orbi2d 915 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌))) |
10 | 7, 9 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)))) |
11 | breq2 5152 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋𝑅𝑧 ↔ 𝑋𝑅𝑍)) | |
12 | breq1 5151 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧𝑅𝑌 ↔ 𝑍𝑅𝑌)) | |
13 | 11, 12 | orbi12d 918 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
14 | 13 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) |
15 | 6, 10, 14 | rspc3v 3638 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) |
16 | 2, 15 | mpan9 506 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: swoer 8775 swoord1 8776 swoord2 8777 |
Copyright terms: Public domain | W3C validator |