|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > swopolem | Structured version Visualization version GIF version | ||
| Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| swopolem.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | 
| Ref | Expression | 
|---|---|
| swopolem | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | swopolem.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | |
| 2 | 1 | ralrimivvva 3205 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | 
| 3 | breq1 5146 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
| 4 | breq1 5146 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑧 ↔ 𝑋𝑅𝑧)) | |
| 5 | 4 | orbi1d 917 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦))) | 
| 6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | 
| 7 | breq2 5147 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
| 8 | breq2 5147 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑌)) | |
| 9 | 8 | orbi2d 916 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌))) | 
| 10 | 7, 9 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)))) | 
| 11 | breq2 5147 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋𝑅𝑧 ↔ 𝑋𝑅𝑍)) | |
| 12 | breq1 5146 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧𝑅𝑌 ↔ 𝑍𝑅𝑌)) | |
| 13 | 11, 12 | orbi12d 919 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) | 
| 14 | 13 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) | 
| 15 | 6, 10, 14 | rspc3v 3638 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) | 
| 16 | 2, 15 | mpan9 506 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 | 
| This theorem is referenced by: swoer 8776 swoord1 8777 swoord2 8778 | 
| Copyright terms: Public domain | W3C validator |