Proof of Theorem swopo
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) |
2 | 1 | ancli 552 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) |
3 | | swopo.1 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) |
4 | 3 | ralrimivva 3120 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) |
5 | | breq1 5039 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑥𝑅𝑧)) |
6 | | breq2 5040 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑥)) |
7 | 6 | notbid 321 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝑥)) |
8 | 5, 7 | imbi12d 348 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦) ↔ (𝑥𝑅𝑧 → ¬ 𝑧𝑅𝑥))) |
9 | | breq2 5040 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑥𝑅𝑧 ↔ 𝑥𝑅𝑥)) |
10 | | breq1 5039 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧𝑅𝑥 ↔ 𝑥𝑅𝑥)) |
11 | 10 | notbid 321 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑥𝑅𝑥)) |
12 | 9, 11 | imbi12d 348 |
. . . . 5
⊢ (𝑧 = 𝑥 → ((𝑥𝑅𝑧 → ¬ 𝑧𝑅𝑥) ↔ (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥))) |
13 | 8, 12 | rspc2va 3554 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) → (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥)) |
14 | 2, 4, 13 | syl2anr 599 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥)) |
15 | 14 | pm2.01d 193 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
16 | 3 | 3adantr1 1166 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) |
17 | | swopo.2 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
18 | 17 | imp 410 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑥𝑅𝑦) → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
19 | 18 | orcomd 868 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑥𝑅𝑦) → (𝑧𝑅𝑦 ∨ 𝑥𝑅𝑧)) |
20 | 19 | ord 861 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑥𝑅𝑦) → (¬ 𝑧𝑅𝑦 → 𝑥𝑅𝑧)) |
21 | 20 | expimpd 457 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ ¬ 𝑧𝑅𝑦) → 𝑥𝑅𝑧)) |
22 | 16, 21 | sylan2d 607 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
23 | 15, 22 | ispod 5455 |
1
⊢ (𝜑 → 𝑅 Po 𝐴) |