Proof of Theorem swopo
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | id 22 | . . . . 5
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | 
| 2 | 1 | ancli 548 | . . . 4
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | 
| 3 |  | swopo.1 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) | 
| 4 | 3 | ralrimivva 3202 | . . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) | 
| 5 |  | breq1 5146 | . . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑥𝑅𝑧)) | 
| 6 |  | breq2 5147 | . . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑥)) | 
| 7 | 6 | notbid 318 | . . . . . 6
⊢ (𝑦 = 𝑥 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝑥)) | 
| 8 | 5, 7 | imbi12d 344 | . . . . 5
⊢ (𝑦 = 𝑥 → ((𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦) ↔ (𝑥𝑅𝑧 → ¬ 𝑧𝑅𝑥))) | 
| 9 |  | breq2 5147 | . . . . . 6
⊢ (𝑧 = 𝑥 → (𝑥𝑅𝑧 ↔ 𝑥𝑅𝑥)) | 
| 10 |  | breq1 5146 | . . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧𝑅𝑥 ↔ 𝑥𝑅𝑥)) | 
| 11 | 10 | notbid 318 | . . . . . 6
⊢ (𝑧 = 𝑥 → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑥𝑅𝑥)) | 
| 12 | 9, 11 | imbi12d 344 | . . . . 5
⊢ (𝑧 = 𝑥 → ((𝑥𝑅𝑧 → ¬ 𝑧𝑅𝑥) ↔ (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥))) | 
| 13 | 8, 12 | rspc2va 3634 | . . . 4
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) → (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥)) | 
| 14 | 2, 4, 13 | syl2anr 597 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥)) | 
| 15 | 14 | pm2.01d 190 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | 
| 16 | 3 | 3adantr1 1170 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) | 
| 17 |  | swopo.2 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | 
| 18 | 17 | imp 406 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑥𝑅𝑦) → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) | 
| 19 | 18 | orcomd 872 | . . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑥𝑅𝑦) → (𝑧𝑅𝑦 ∨ 𝑥𝑅𝑧)) | 
| 20 | 19 | ord 865 | . . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑥𝑅𝑦) → (¬ 𝑧𝑅𝑦 → 𝑥𝑅𝑧)) | 
| 21 | 20 | expimpd 453 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ ¬ 𝑧𝑅𝑦) → 𝑥𝑅𝑧)) | 
| 22 | 16, 21 | sylan2d 605 | . 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 23 | 15, 22 | ispod 5601 | 1
⊢ (𝜑 → 𝑅 Po 𝐴) |