Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
Ref | Expression |
---|---|
ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
2 | 1 | 3anassrs 1359 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
3 | 2 | ralrimiva 3103 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
4 | 3 | ralrimiva 3103 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
5 | 4 | ralrimiva 3103 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-ral 3069 |
This theorem is referenced by: ispod 5512 swopolem 5513 isopolem 7216 caovassg 7470 caovcang 7473 caovordig 7477 caovordg 7479 caovdig 7486 caovdirg 7489 caofass 7570 caoftrn 7571 2oppccomf 17436 oppccomfpropd 17438 issubc3 17564 fthmon 17643 fuccocl 17682 fucidcl 17683 invfuc 17692 resssetc 17807 resscatc 17824 curf2cl 17949 yonedalem4c 17995 yonedalem3 17998 latdisdlem 18214 isringd 19824 prdsringd 19851 islmodd 20129 islmhm2 20300 isphld 20859 ocvlss 20877 isassad 21071 mdetuni0 21770 mdetmul 21772 isngp4 23768 tglowdim2ln 27012 f1otrgitv 27231 f1otrg 27232 f1otrge 27233 xmstrkgc 27253 eengtrkg 27354 eengtrkge 27355 submomnd 31336 ccfldsrarelvec 31741 conway 33993 isrngod 36056 rngomndo 36093 isgrpda 36113 islfld 37076 lfladdcl 37085 lflnegcl 37089 lshpkrcl 37130 lclkr 39547 lclkrs 39553 lcfr 39599 isdomn4 40172 copissgrp 45362 lidlmsgrp 45484 lidlrng 45485 cznrng 45513 topdlat 46290 catprs2 46293 idmon 46297 idepi 46298 thincmon 46315 thincepi 46316 isthincd2 46319 grptcmon 46377 grptcepi 46378 |
Copyright terms: Public domain | W3C validator |