| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
| 2 | 1 | 3anassrs 1361 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
| 3 | 2 | ralrimiva 3125 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
| 4 | 3 | ralrimiva 3125 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| 5 | 4 | ralrimiva 3125 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3045 |
| This theorem is referenced by: ispod 5548 swopolem 5549 isopolem 7302 caovassg 7567 caovcang 7570 caovordig 7574 caovordg 7576 caovdig 7583 caovdirg 7586 caofass 7673 caoftrn 7674 2oppccomf 17666 oppccomfpropd 17668 issubc3 17791 fthmon 17871 fuccocl 17909 fucidcl 17910 invfuc 17919 resssetc 18034 resscatc 18051 curf2cl 18172 yonedalem4c 18218 yonedalem3 18221 latdisdlem 18437 submomnd 20046 isrngd 20093 prdsrngd 20096 srgo2times 20132 srgcom4lem 20133 ringo2times 20195 ringcomlem 20199 isringd 20211 prdsringd 20241 isdomn4 20636 islmodd 20804 islmhm2 20977 rnglidl1 21174 rnglidlmsgrp 21188 rnglidlrng 21189 isphld 21596 ocvlss 21614 isassad 21807 mdetuni0 22541 mdetmul 22543 isngp4 24533 conway 27745 mulsprop 28073 tglowdim2ln 28631 f1otrgitv 28850 f1otrg 28851 f1otrge 28852 xmstrkgc 28866 eengtrkg 28966 eengtrkge 28967 ccfldsrarelvec 33659 weiunpo 36446 isrngod 37885 rngomndo 37922 isgrpda 37942 islfld 39048 lfladdcl 39057 lflnegcl 39061 lshpkrcl 39102 lclkr 41520 lclkrs 41526 lcfr 41572 copissgrp 48149 cznrng 48242 topdlat 48985 catprs2 48994 idmon 49002 idepi 49003 ssccatid 49054 resccatlem 49055 fthcomf 49139 thincmon 49415 thincepi 49416 isthincd2 49419 oppcthinco 49421 oppcthinendcALT 49423 grptcmon 49575 grptcepi 49576 |
| Copyright terms: Public domain | W3C validator |