MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimivvva Structured version   Visualization version   GIF version

Theorem ralrimivvva 3127
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ralrimivvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵𝑧𝐶)) → 𝜓)
Assertion
Ref Expression
ralrimivvva (𝜑 → ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑦,𝐴,𝑧   𝑧,𝐵
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem ralrimivvva
StepHypRef Expression
1 ralrimivvva.1 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐵𝑧𝐶)) → 𝜓)
213anassrs 1359 . . . 4 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝑧𝐶) → 𝜓)
32ralrimiva 3103 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → ∀𝑧𝐶 𝜓)
43ralrimiva 3103 . 2 ((𝜑𝑥𝐴) → ∀𝑦𝐵𝑧𝐶 𝜓)
54ralrimiva 3103 1 (𝜑 → ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ral 3069
This theorem is referenced by:  ispod  5512  swopolem  5513  isopolem  7216  caovassg  7470  caovcang  7473  caovordig  7477  caovordg  7479  caovdig  7486  caovdirg  7489  caofass  7570  caoftrn  7571  2oppccomf  17436  oppccomfpropd  17438  issubc3  17564  fthmon  17643  fuccocl  17682  fucidcl  17683  invfuc  17692  resssetc  17807  resscatc  17824  curf2cl  17949  yonedalem4c  17995  yonedalem3  17998  latdisdlem  18214  isringd  19824  prdsringd  19851  islmodd  20129  islmhm2  20300  isphld  20859  ocvlss  20877  isassad  21071  mdetuni0  21770  mdetmul  21772  isngp4  23768  tglowdim2ln  27012  f1otrgitv  27231  f1otrg  27232  f1otrge  27233  xmstrkgc  27253  eengtrkg  27354  eengtrkge  27355  submomnd  31336  ccfldsrarelvec  31741  conway  33993  isrngod  36056  rngomndo  36093  isgrpda  36113  islfld  37076  lfladdcl  37085  lflnegcl  37089  lshpkrcl  37130  lclkr  39547  lclkrs  39553  lcfr  39599  isdomn4  40172  copissgrp  45362  lidlmsgrp  45484  lidlrng  45485  cznrng  45513  topdlat  46290  catprs2  46293  idmon  46297  idepi  46298  thincmon  46315  thincepi  46316  isthincd2  46319  grptcmon  46377  grptcepi  46378
  Copyright terms: Public domain W3C validator