| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
| 2 | 1 | 3anassrs 1361 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
| 3 | 2 | ralrimiva 3133 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
| 4 | 3 | ralrimiva 3133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| 5 | 4 | ralrimiva 3133 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3053 |
| This theorem is referenced by: ispod 5575 swopolem 5576 isopolem 7343 caovassg 7610 caovcang 7613 caovordig 7617 caovordg 7619 caovdig 7626 caovdirg 7629 caofass 7716 caoftrn 7717 2oppccomf 17742 oppccomfpropd 17744 issubc3 17867 fthmon 17947 fuccocl 17985 fucidcl 17986 invfuc 17995 resssetc 18110 resscatc 18127 curf2cl 18248 yonedalem4c 18294 yonedalem3 18297 latdisdlem 18511 isrngd 20138 prdsrngd 20141 srgo2times 20177 srgcom4lem 20178 ringo2times 20240 ringcomlem 20244 isringd 20256 prdsringd 20286 isdomn4 20681 islmodd 20828 islmhm2 21001 rnglidl1 21198 rnglidlmsgrp 21212 rnglidlrng 21213 isphld 21619 ocvlss 21637 isassad 21830 mdetuni0 22564 mdetmul 22566 isngp4 24556 conway 27768 mulsprop 28090 tglowdim2ln 28635 f1otrgitv 28854 f1otrg 28855 f1otrge 28856 xmstrkgc 28870 eengtrkg 28970 eengtrkge 28971 submomnd 33083 ccfldsrarelvec 33717 weiunpo 36488 isrngod 37927 rngomndo 37964 isgrpda 37984 islfld 39085 lfladdcl 39094 lflnegcl 39098 lshpkrcl 39139 lclkr 41557 lclkrs 41563 lcfr 41609 copissgrp 48110 cznrng 48203 topdlat 48945 catprs2 48954 idmon 48962 idepi 48963 ssccatid 49006 resccatlem 49007 fthcomf 49064 thincmon 49286 thincepi 49287 isthincd2 49290 oppcthinco 49292 oppcthinendcALT 49294 grptcmon 49437 grptcepi 49438 |
| Copyright terms: Public domain | W3C validator |