MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimivvva Structured version   Visualization version   GIF version

Theorem ralrimivvva 3211
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ralrimivvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵𝑧𝐶)) → 𝜓)
Assertion
Ref Expression
ralrimivvva (𝜑 → ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑦,𝐴,𝑧   𝑧,𝐵
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem ralrimivvva
StepHypRef Expression
1 ralrimivvva.1 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐵𝑧𝐶)) → 𝜓)
213anassrs 1360 . . . 4 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝑧𝐶) → 𝜓)
32ralrimiva 3152 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → ∀𝑧𝐶 𝜓)
43ralrimiva 3152 . 2 ((𝜑𝑥𝐴) → ∀𝑦𝐵𝑧𝐶 𝜓)
54ralrimiva 3152 1 (𝜑 → ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-ral 3068
This theorem is referenced by:  ispod  5617  swopolem  5618  isopolem  7381  caovassg  7648  caovcang  7651  caovordig  7655  caovordg  7657  caovdig  7664  caovdirg  7667  caofass  7752  caoftrn  7753  2oppccomf  17785  oppccomfpropd  17787  issubc3  17913  fthmon  17994  fuccocl  18034  fucidcl  18035  invfuc  18044  resssetc  18159  resscatc  18176  curf2cl  18301  yonedalem4c  18347  yonedalem3  18350  latdisdlem  18566  isrngd  20200  prdsrngd  20203  srgo2times  20239  srgcom4lem  20240  ringo2times  20298  ringcomlem  20302  isringd  20314  prdsringd  20344  isdomn4  20738  islmodd  20886  islmhm2  21060  rnglidl1  21265  rnglidlmsgrp  21279  rnglidlrng  21280  isphld  21695  ocvlss  21713  isassad  21908  mdetuni0  22648  mdetmul  22650  isngp4  24646  conway  27862  mulsprop  28174  tglowdim2ln  28677  f1otrgitv  28896  f1otrg  28897  f1otrge  28898  xmstrkgc  28918  eengtrkg  29019  eengtrkge  29020  submomnd  33060  ccfldsrarelvec  33681  weiunpo  36431  isrngod  37858  rngomndo  37895  isgrpda  37915  islfld  39018  lfladdcl  39027  lflnegcl  39031  lshpkrcl  39072  lclkr  41490  lclkrs  41496  lcfr  41542  copissgrp  47891  cznrng  47984  topdlat  48676  catprs2  48679  idmon  48683  idepi  48684  thincmon  48701  thincepi  48702  isthincd2  48705  grptcmon  48763  grptcepi  48764
  Copyright terms: Public domain W3C validator