![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
Ref | Expression |
---|---|
ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
2 | 1 | 3anassrs 1359 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
3 | 2 | ralrimiva 3144 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
4 | 3 | ralrimiva 3144 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
5 | 4 | ralrimiva 3144 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3060 |
This theorem is referenced by: ispod 5606 swopolem 5607 isopolem 7365 caovassg 7631 caovcang 7634 caovordig 7638 caovordg 7640 caovdig 7647 caovdirg 7650 caofass 7736 caoftrn 7737 2oppccomf 17772 oppccomfpropd 17774 issubc3 17900 fthmon 17981 fuccocl 18021 fucidcl 18022 invfuc 18031 resssetc 18146 resscatc 18163 curf2cl 18288 yonedalem4c 18334 yonedalem3 18337 latdisdlem 18554 isrngd 20191 prdsrngd 20194 srgo2times 20230 srgcom4lem 20231 ringo2times 20289 ringcomlem 20293 isringd 20305 prdsringd 20335 isdomn4 20733 islmodd 20881 islmhm2 21055 rnglidl1 21260 rnglidlmsgrp 21274 rnglidlrng 21275 isphld 21690 ocvlss 21708 isassad 21903 mdetuni0 22643 mdetmul 22645 isngp4 24641 conway 27859 mulsprop 28171 tglowdim2ln 28674 f1otrgitv 28893 f1otrg 28894 f1otrge 28895 xmstrkgc 28915 eengtrkg 29016 eengtrkge 29017 submomnd 33070 ccfldsrarelvec 33696 weiunpo 36448 isrngod 37885 rngomndo 37922 isgrpda 37942 islfld 39044 lfladdcl 39053 lflnegcl 39057 lshpkrcl 39098 lclkr 41516 lclkrs 41522 lcfr 41568 copissgrp 48012 cznrng 48105 topdlat 48793 catprs2 48801 idmon 48805 idepi 48806 thincmon 48834 thincepi 48835 isthincd2 48838 grptcmon 48902 grptcepi 48903 |
Copyright terms: Public domain | W3C validator |