| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
| 2 | 1 | 3anassrs 1361 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
| 3 | 2 | ralrimiva 3126 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
| 4 | 3 | ralrimiva 3126 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| 5 | 4 | ralrimiva 3126 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3046 |
| This theorem is referenced by: ispod 5558 swopolem 5559 isopolem 7323 caovassg 7590 caovcang 7593 caovordig 7597 caovordg 7599 caovdig 7606 caovdirg 7609 caofass 7696 caoftrn 7697 2oppccomf 17693 oppccomfpropd 17695 issubc3 17818 fthmon 17898 fuccocl 17936 fucidcl 17937 invfuc 17946 resssetc 18061 resscatc 18078 curf2cl 18199 yonedalem4c 18245 yonedalem3 18248 latdisdlem 18462 isrngd 20089 prdsrngd 20092 srgo2times 20128 srgcom4lem 20129 ringo2times 20191 ringcomlem 20195 isringd 20207 prdsringd 20237 isdomn4 20632 islmodd 20779 islmhm2 20952 rnglidl1 21149 rnglidlmsgrp 21163 rnglidlrng 21164 isphld 21570 ocvlss 21588 isassad 21781 mdetuni0 22515 mdetmul 22517 isngp4 24507 conway 27718 mulsprop 28040 tglowdim2ln 28585 f1otrgitv 28804 f1otrg 28805 f1otrge 28806 xmstrkgc 28820 eengtrkg 28920 eengtrkge 28921 submomnd 33031 ccfldsrarelvec 33673 weiunpo 36460 isrngod 37899 rngomndo 37936 isgrpda 37956 islfld 39062 lfladdcl 39071 lflnegcl 39075 lshpkrcl 39116 lclkr 41534 lclkrs 41540 lcfr 41586 copissgrp 48160 cznrng 48253 topdlat 48996 catprs2 49005 idmon 49013 idepi 49014 ssccatid 49065 resccatlem 49066 fthcomf 49150 thincmon 49426 thincepi 49427 isthincd2 49430 oppcthinco 49432 oppcthinendcALT 49434 grptcmon 49586 grptcepi 49587 |
| Copyright terms: Public domain | W3C validator |