| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
| 2 | 1 | 3anassrs 1361 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
| 3 | 2 | ralrimiva 3121 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
| 4 | 3 | ralrimiva 3121 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| 5 | 4 | ralrimiva 3121 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3045 |
| This theorem is referenced by: ispod 5536 swopolem 5537 isopolem 7282 caovassg 7547 caovcang 7550 caovordig 7554 caovordg 7556 caovdig 7563 caovdirg 7566 caofass 7653 caoftrn 7654 2oppccomf 17631 oppccomfpropd 17633 issubc3 17756 fthmon 17836 fuccocl 17874 fucidcl 17875 invfuc 17884 resssetc 17999 resscatc 18016 curf2cl 18137 yonedalem4c 18183 yonedalem3 18186 latdisdlem 18402 submomnd 20011 isrngd 20058 prdsrngd 20061 srgo2times 20097 srgcom4lem 20098 ringo2times 20160 ringcomlem 20164 isringd 20176 prdsringd 20206 isdomn4 20601 islmodd 20769 islmhm2 20942 rnglidl1 21139 rnglidlmsgrp 21153 rnglidlrng 21154 isphld 21561 ocvlss 21579 isassad 21772 mdetuni0 22506 mdetmul 22508 isngp4 24498 conway 27711 mulsprop 28040 tglowdim2ln 28600 f1otrgitv 28819 f1otrg 28820 f1otrge 28821 xmstrkgc 28835 eengtrkg 28935 eengtrkge 28936 ccfldsrarelvec 33654 weiunpo 36459 isrngod 37898 rngomndo 37935 isgrpda 37955 islfld 39061 lfladdcl 39070 lflnegcl 39074 lshpkrcl 39115 lclkr 41532 lclkrs 41538 lcfr 41584 copissgrp 48172 cznrng 48265 topdlat 49008 catprs2 49017 idmon 49025 idepi 49026 ssccatid 49077 resccatlem 49078 fthcomf 49162 thincmon 49438 thincepi 49439 isthincd2 49442 oppcthinco 49444 oppcthinendcALT 49446 grptcmon 49598 grptcepi 49599 |
| Copyright terms: Public domain | W3C validator |