![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
Ref | Expression |
---|---|
ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
2 | 1 | 3anassrs 1360 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
3 | 2 | ralrimiva 3152 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
4 | 3 | ralrimiva 3152 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
5 | 4 | ralrimiva 3152 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ral 3068 |
This theorem is referenced by: ispod 5617 swopolem 5618 isopolem 7381 caovassg 7648 caovcang 7651 caovordig 7655 caovordg 7657 caovdig 7664 caovdirg 7667 caofass 7752 caoftrn 7753 2oppccomf 17785 oppccomfpropd 17787 issubc3 17913 fthmon 17994 fuccocl 18034 fucidcl 18035 invfuc 18044 resssetc 18159 resscatc 18176 curf2cl 18301 yonedalem4c 18347 yonedalem3 18350 latdisdlem 18566 isrngd 20200 prdsrngd 20203 srgo2times 20239 srgcom4lem 20240 ringo2times 20298 ringcomlem 20302 isringd 20314 prdsringd 20344 isdomn4 20738 islmodd 20886 islmhm2 21060 rnglidl1 21265 rnglidlmsgrp 21279 rnglidlrng 21280 isphld 21695 ocvlss 21713 isassad 21908 mdetuni0 22648 mdetmul 22650 isngp4 24646 conway 27862 mulsprop 28174 tglowdim2ln 28677 f1otrgitv 28896 f1otrg 28897 f1otrge 28898 xmstrkgc 28918 eengtrkg 29019 eengtrkge 29020 submomnd 33060 ccfldsrarelvec 33681 weiunpo 36431 isrngod 37858 rngomndo 37895 isgrpda 37915 islfld 39018 lfladdcl 39027 lflnegcl 39031 lshpkrcl 39072 lclkr 41490 lclkrs 41496 lcfr 41542 copissgrp 47891 cznrng 47984 topdlat 48676 catprs2 48679 idmon 48683 idepi 48684 thincmon 48701 thincepi 48702 isthincd2 48705 grptcmon 48763 grptcepi 48764 |
Copyright terms: Public domain | W3C validator |