![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
Ref | Expression |
---|---|
ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
2 | 1 | 3anassrs 1357 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
3 | 2 | ralrimiva 3136 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
4 | 3 | ralrimiva 3136 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
5 | 4 | ralrimiva 3136 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 ∀wral 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-ral 3052 |
This theorem is referenced by: ispod 5593 swopolem 5594 isopolem 7348 caovassg 7615 caovcang 7618 caovordig 7622 caovordg 7624 caovdig 7631 caovdirg 7634 caofass 7719 caoftrn 7720 2oppccomf 17704 oppccomfpropd 17706 issubc3 17832 fthmon 17913 fuccocl 17953 fucidcl 17954 invfuc 17963 resssetc 18078 resscatc 18095 curf2cl 18220 yonedalem4c 18266 yonedalem3 18269 latdisdlem 18485 isrngd 20115 prdsrngd 20118 srgo2times 20154 srgcom4lem 20155 ringo2times 20213 ringcomlem 20217 isringd 20229 prdsringd 20259 islmodd 20751 islmhm2 20925 rnglidl1 21130 rnglidlmsgrp 21143 rnglidlrng 21144 isdomn4 21252 isphld 21588 ocvlss 21606 isassad 21800 mdetuni0 22539 mdetmul 22541 isngp4 24537 conway 27748 mulsprop 28050 tglowdim2ln 28497 f1otrgitv 28716 f1otrg 28717 f1otrge 28718 xmstrkgc 28738 eengtrkg 28839 eengtrkge 28840 submomnd 32833 ccfldsrarelvec 33415 isrngod 37427 rngomndo 37464 isgrpda 37484 islfld 38589 lfladdcl 38598 lflnegcl 38602 lshpkrcl 38643 lclkr 41061 lclkrs 41067 lcfr 41113 copissgrp 47341 cznrng 47434 topdlat 48126 catprs2 48129 idmon 48133 idepi 48134 thincmon 48151 thincepi 48152 isthincd2 48155 grptcmon 48213 grptcepi 48214 |
Copyright terms: Public domain | W3C validator |