| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
| 2 | 1 | 3anassrs 1361 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
| 3 | 2 | ralrimiva 3125 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
| 4 | 3 | ralrimiva 3125 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| 5 | 4 | ralrimiva 3125 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3045 |
| This theorem is referenced by: ispod 5548 swopolem 5549 isopolem 7302 caovassg 7567 caovcang 7570 caovordig 7574 caovordg 7576 caovdig 7583 caovdirg 7586 caofass 7673 caoftrn 7674 2oppccomf 17667 oppccomfpropd 17669 issubc3 17792 fthmon 17872 fuccocl 17910 fucidcl 17911 invfuc 17920 resssetc 18035 resscatc 18052 curf2cl 18173 yonedalem4c 18219 yonedalem3 18222 latdisdlem 18438 submomnd 20047 isrngd 20094 prdsrngd 20097 srgo2times 20133 srgcom4lem 20134 ringo2times 20196 ringcomlem 20200 isringd 20212 prdsringd 20242 isdomn4 20637 islmodd 20805 islmhm2 20978 rnglidl1 21175 rnglidlmsgrp 21189 rnglidlrng 21190 isphld 21597 ocvlss 21615 isassad 21808 mdetuni0 22542 mdetmul 22544 isngp4 24534 conway 27746 mulsprop 28074 tglowdim2ln 28632 f1otrgitv 28851 f1otrg 28852 f1otrge 28853 xmstrkgc 28867 eengtrkg 28967 eengtrkge 28968 ccfldsrarelvec 33660 weiunpo 36447 isrngod 37886 rngomndo 37923 isgrpda 37943 islfld 39049 lfladdcl 39058 lflnegcl 39062 lshpkrcl 39103 lclkr 41521 lclkrs 41527 lcfr 41573 copissgrp 48150 cznrng 48243 topdlat 48986 catprs2 48995 idmon 49003 idepi 49004 ssccatid 49055 resccatlem 49056 fthcomf 49140 thincmon 49416 thincepi 49417 isthincd2 49420 oppcthinco 49422 oppcthinendcALT 49424 grptcmon 49576 grptcepi 49577 |
| Copyright terms: Public domain | W3C validator |