Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
Ref | Expression |
---|---|
ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
2 | 1 | 3anassrs 1358 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
3 | 2 | ralrimiva 3107 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
4 | 3 | ralrimiva 3107 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
5 | 4 | ralrimiva 3107 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ral 3068 |
This theorem is referenced by: ispod 5503 swopolem 5504 isopolem 7196 caovassg 7448 caovcang 7451 caovordig 7455 caovordg 7457 caovdig 7464 caovdirg 7467 caofass 7548 caoftrn 7549 2oppccomf 17353 oppccomfpropd 17355 issubc3 17480 fthmon 17559 fuccocl 17598 fucidcl 17599 invfuc 17608 resssetc 17723 resscatc 17740 curf2cl 17865 yonedalem4c 17911 yonedalem3 17914 latdisdlem 18129 isringd 19739 prdsringd 19766 islmodd 20044 islmhm2 20215 isphld 20771 ocvlss 20789 isassad 20981 mdetuni0 21678 mdetmul 21680 isngp4 23674 tglowdim2ln 26916 f1otrgitv 27135 f1otrg 27136 f1otrge 27137 xmstrkgc 27156 eengtrkg 27257 eengtrkge 27258 submomnd 31238 ccfldsrarelvec 31643 conway 33920 isrngod 35983 rngomndo 36020 isgrpda 36040 islfld 37003 lfladdcl 37012 lflnegcl 37016 lshpkrcl 37057 lclkr 39474 lclkrs 39480 lcfr 39526 isdomn4 40100 copissgrp 45250 lidlmsgrp 45372 lidlrng 45373 cznrng 45401 topdlat 46178 catprs2 46181 idmon 46185 idepi 46186 thincmon 46203 thincepi 46204 isthincd2 46207 grptcmon 46263 grptcepi 46264 |
Copyright terms: Public domain | W3C validator |