![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
Ref | Expression |
---|---|
ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
2 | 1 | 3anassrs 1358 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
3 | 2 | ralrimiva 3144 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
4 | 3 | ralrimiva 3144 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
5 | 4 | ralrimiva 3144 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-ral 3060 |
This theorem is referenced by: ispod 5596 swopolem 5597 isopolem 7344 caovassg 7607 caovcang 7610 caovordig 7614 caovordg 7616 caovdig 7623 caovdirg 7626 caofass 7709 caoftrn 7710 2oppccomf 17675 oppccomfpropd 17677 issubc3 17803 fthmon 17882 fuccocl 17921 fucidcl 17922 invfuc 17931 resssetc 18046 resscatc 18063 curf2cl 18188 yonedalem4c 18234 yonedalem3 18237 latdisdlem 18453 isrngd 20067 prdsrngd 20070 srgo2times 20106 srgcom4lem 20107 ringo2times 20163 ringcomlem 20167 isringd 20179 prdsringd 20209 islmodd 20620 islmhm2 20793 rnglidl1 21033 rnglidlmsgrp 21035 rnglidlrng 21036 isdomn4 21118 isphld 21426 ocvlss 21444 isassad 21638 mdetuni0 22343 mdetmul 22345 isngp4 24341 conway 27537 mulsprop 27825 tglowdim2ln 28169 f1otrgitv 28388 f1otrg 28389 f1otrge 28390 xmstrkgc 28410 eengtrkg 28511 eengtrkge 28512 submomnd 32498 ccfldsrarelvec 33034 isrngod 37069 rngomndo 37106 isgrpda 37126 islfld 38235 lfladdcl 38244 lflnegcl 38248 lshpkrcl 38289 lclkr 40707 lclkrs 40713 lcfr 40759 copissgrp 46844 cznrng 46941 topdlat 47716 catprs2 47719 idmon 47723 idepi 47724 thincmon 47741 thincepi 47742 isthincd2 47745 grptcmon 47803 grptcepi 47804 |
Copyright terms: Public domain | W3C validator |