| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivvva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ralrimivvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivvva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivvva.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) → 𝜓) | |
| 2 | 1 | 3anassrs 1361 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜓) |
| 3 | 2 | ralrimiva 3124 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜓) |
| 4 | 3 | ralrimiva 3124 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| 5 | 4 | ralrimiva 3124 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3048 |
| This theorem is referenced by: ispod 5531 swopolem 5532 isopolem 7279 caovassg 7544 caovcang 7547 caovordig 7551 caovordg 7553 caovdig 7560 caovdirg 7563 caofass 7650 caoftrn 7651 2oppccomf 17631 oppccomfpropd 17633 issubc3 17756 fthmon 17836 fuccocl 17874 fucidcl 17875 invfuc 17884 resssetc 17999 resscatc 18016 curf2cl 18137 yonedalem4c 18183 yonedalem3 18186 latdisdlem 18402 submomnd 20044 isrngd 20091 prdsrngd 20094 srgo2times 20130 srgcom4lem 20131 ringo2times 20193 ringcomlem 20197 isringd 20209 prdsringd 20239 isdomn4 20631 islmodd 20799 islmhm2 20972 rnglidl1 21169 rnglidlmsgrp 21183 rnglidlrng 21184 isphld 21591 ocvlss 21609 isassad 21802 mdetuni0 22536 mdetmul 22538 isngp4 24527 conway 27740 mulsprop 28069 tglowdim2ln 28629 f1otrgitv 28848 f1otrg 28849 f1otrge 28850 xmstrkgc 28864 eengtrkg 28964 eengtrkge 28965 ccfldsrarelvec 33684 weiunpo 36509 isrngod 37937 rngomndo 37974 isgrpda 37994 islfld 39160 lfladdcl 39169 lflnegcl 39173 lshpkrcl 39214 lclkr 41631 lclkrs 41637 lcfr 41683 copissgrp 48267 cznrng 48360 topdlat 49103 catprs2 49112 idmon 49120 idepi 49121 ssccatid 49172 resccatlem 49173 fthcomf 49257 thincmon 49533 thincepi 49534 isthincd2 49537 oppcthinco 49539 oppcthinendcALT 49541 grptcmon 49693 grptcepi 49694 |
| Copyright terms: Public domain | W3C validator |