![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lrrecpo | Structured version Visualization version GIF version |
Description: Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecpo | ⊢ 𝑅 Po No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayelon 27624 | . . . . . 6 ⊢ ( bday ‘𝑎) ∈ On | |
2 | 1 | onirri 6477 | . . . . 5 ⊢ ¬ ( bday ‘𝑎) ∈ ( bday ‘𝑎) |
3 | lrrec.1 | . . . . . . 7 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
4 | 3 | lrrecval2 27772 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑎 ∈ No ) → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
5 | 4 | anidms 566 | . . . . 5 ⊢ (𝑎 ∈ No → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
6 | 2, 5 | mtbiri 327 | . . . 4 ⊢ (𝑎 ∈ No → ¬ 𝑎𝑅𝑎) |
7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ No ) → ¬ 𝑎𝑅𝑎) |
8 | bdayelon 27624 | . . . . . 6 ⊢ ( bday ‘𝑐) ∈ On | |
9 | ontr1 6410 | . . . . . 6 ⊢ (( bday ‘𝑐) ∈ On → ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐))) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)) |
11 | 3 | lrrecval2 27772 | . . . . . . . 8 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
12 | 11 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
13 | 3 | lrrecval2 27772 | . . . . . . . 8 ⊢ ((𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
14 | 13 | 3adant1 1129 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
15 | 12, 14 | anbi12d 630 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) ↔ (( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)))) |
16 | 3 | lrrecval2 27772 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
17 | 16 | 3adant2 1130 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
18 | 15, 17 | imbi12d 344 | . . . . 5 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) ↔ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)))) |
19 | 10, 18 | mpbiri 258 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
20 | 19 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No )) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
21 | 7, 20 | ispod 5597 | . 2 ⊢ (⊤ → 𝑅 Po No ) |
22 | 21 | mptru 1547 | 1 ⊢ 𝑅 Po No |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 ∪ cun 3946 class class class wbr 5148 {copab 5210 Po wpo 5586 Oncon0 6364 ‘cfv 6543 No csur 27488 bday cbday 27490 L cleft 27687 R cright 27688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-no 27491 df-slt 27492 df-bday 27493 df-sslt 27629 df-scut 27631 df-made 27689 df-old 27690 df-left 27692 df-right 27693 |
This theorem is referenced by: noinds 27777 norecfn 27778 norecov 27779 noxpordpo 27782 no2indslem 27786 no3inds 27790 |
Copyright terms: Public domain | W3C validator |