MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecpo Structured version   Visualization version   GIF version

Theorem lrrecpo 27879
Description: Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecpo 𝑅 Po No
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecpo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayelon 27710 . . . . . 6 ( bday 𝑎) ∈ On
21onirri 6415 . . . . 5 ¬ ( bday 𝑎) ∈ ( bday 𝑎)
3 lrrec.1 . . . . . . 7 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
43lrrecval2 27878 . . . . . 6 ((𝑎 No 𝑎 No ) → (𝑎𝑅𝑎 ↔ ( bday 𝑎) ∈ ( bday 𝑎)))
54anidms 566 . . . . 5 (𝑎 No → (𝑎𝑅𝑎 ↔ ( bday 𝑎) ∈ ( bday 𝑎)))
62, 5mtbiri 327 . . . 4 (𝑎 No → ¬ 𝑎𝑅𝑎)
76adantl 481 . . 3 ((⊤ ∧ 𝑎 No ) → ¬ 𝑎𝑅𝑎)
8 bdayelon 27710 . . . . . 6 ( bday 𝑐) ∈ On
9 ontr1 6348 . . . . . 6 (( bday 𝑐) ∈ On → ((( bday 𝑎) ∈ ( bday 𝑏) ∧ ( bday 𝑏) ∈ ( bday 𝑐)) → ( bday 𝑎) ∈ ( bday 𝑐)))
108, 9ax-mp 5 . . . . 5 ((( bday 𝑎) ∈ ( bday 𝑏) ∧ ( bday 𝑏) ∈ ( bday 𝑐)) → ( bday 𝑎) ∈ ( bday 𝑐))
113lrrecval2 27878 . . . . . . . 8 ((𝑎 No 𝑏 No ) → (𝑎𝑅𝑏 ↔ ( bday 𝑎) ∈ ( bday 𝑏)))
12113adant3 1132 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → (𝑎𝑅𝑏 ↔ ( bday 𝑎) ∈ ( bday 𝑏)))
133lrrecval2 27878 . . . . . . . 8 ((𝑏 No 𝑐 No ) → (𝑏𝑅𝑐 ↔ ( bday 𝑏) ∈ ( bday 𝑐)))
14133adant1 1130 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → (𝑏𝑅𝑐 ↔ ( bday 𝑏) ∈ ( bday 𝑐)))
1512, 14anbi12d 632 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → ((𝑎𝑅𝑏𝑏𝑅𝑐) ↔ (( bday 𝑎) ∈ ( bday 𝑏) ∧ ( bday 𝑏) ∈ ( bday 𝑐))))
163lrrecval2 27878 . . . . . . 7 ((𝑎 No 𝑐 No ) → (𝑎𝑅𝑐 ↔ ( bday 𝑎) ∈ ( bday 𝑐)))
17163adant2 1131 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (𝑎𝑅𝑐 ↔ ( bday 𝑎) ∈ ( bday 𝑐)))
1815, 17imbi12d 344 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐) ↔ ((( bday 𝑎) ∈ ( bday 𝑏) ∧ ( bday 𝑏) ∈ ( bday 𝑐)) → ( bday 𝑎) ∈ ( bday 𝑐))))
1910, 18mpbiri 258 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
2019adantl 481 . . 3 ((⊤ ∧ (𝑎 No 𝑏 No 𝑐 No )) → ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
217, 20ispod 5528 . 2 (⊤ → 𝑅 Po No )
2221mptru 1548 1 𝑅 Po No
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  cun 3895   class class class wbr 5086  {copab 5148   Po wpo 5517  Oncon0 6301  cfv 6476   No csur 27573   bday cbday 27575   L cleft 27781   R cright 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-no 27576  df-slt 27577  df-bday 27578  df-sslt 27716  df-scut 27718  df-made 27783  df-old 27784  df-left 27786  df-right 27787
This theorem is referenced by:  noinds  27883  norecfn  27884  norecov  27885  noxpordpo  27888  no2indslem  27892  no3inds  27896
  Copyright terms: Public domain W3C validator