| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrrecpo | Structured version Visualization version GIF version | ||
| Description: Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| Ref | Expression |
|---|---|
| lrrecpo | ⊢ 𝑅 Po No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayelon 27705 | . . . . . 6 ⊢ ( bday ‘𝑎) ∈ On | |
| 2 | 1 | onirri 6425 | . . . . 5 ⊢ ¬ ( bday ‘𝑎) ∈ ( bday ‘𝑎) |
| 3 | lrrec.1 | . . . . . . 7 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 4 | 3 | lrrecval2 27871 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑎 ∈ No ) → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
| 5 | 4 | anidms 566 | . . . . 5 ⊢ (𝑎 ∈ No → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
| 6 | 2, 5 | mtbiri 327 | . . . 4 ⊢ (𝑎 ∈ No → ¬ 𝑎𝑅𝑎) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ No ) → ¬ 𝑎𝑅𝑎) |
| 8 | bdayelon 27705 | . . . . . 6 ⊢ ( bday ‘𝑐) ∈ On | |
| 9 | ontr1 6358 | . . . . . 6 ⊢ (( bday ‘𝑐) ∈ On → ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐))) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)) |
| 11 | 3 | lrrecval2 27871 | . . . . . . . 8 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
| 12 | 11 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
| 13 | 3 | lrrecval2 27871 | . . . . . . . 8 ⊢ ((𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
| 14 | 13 | 3adant1 1130 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
| 15 | 12, 14 | anbi12d 632 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) ↔ (( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)))) |
| 16 | 3 | lrrecval2 27871 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
| 17 | 16 | 3adant2 1131 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
| 18 | 15, 17 | imbi12d 344 | . . . . 5 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) ↔ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)))) |
| 19 | 10, 18 | mpbiri 258 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No )) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 21 | 7, 20 | ispod 5540 | . 2 ⊢ (⊤ → 𝑅 Po No ) |
| 22 | 21 | mptru 1547 | 1 ⊢ 𝑅 Po No |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∪ cun 3903 class class class wbr 5095 {copab 5157 Po wpo 5529 Oncon0 6311 ‘cfv 6486 No csur 27568 bday cbday 27570 L cleft 27774 R cright 27775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-no 27571 df-slt 27572 df-bday 27573 df-sslt 27711 df-scut 27713 df-made 27776 df-old 27777 df-left 27779 df-right 27780 |
| This theorem is referenced by: noinds 27876 norecfn 27877 norecov 27878 noxpordpo 27881 no2indslem 27885 no3inds 27889 |
| Copyright terms: Public domain | W3C validator |