Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lrrecpo | Structured version Visualization version GIF version |
Description: Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecpo | ⊢ 𝑅 Po No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayelon 33898 | . . . . . 6 ⊢ ( bday ‘𝑎) ∈ On | |
2 | 1 | onirri 6358 | . . . . 5 ⊢ ¬ ( bday ‘𝑎) ∈ ( bday ‘𝑎) |
3 | lrrec.1 | . . . . . . 7 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
4 | 3 | lrrecval2 34024 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑎 ∈ No ) → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
5 | 4 | anidms 566 | . . . . 5 ⊢ (𝑎 ∈ No → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
6 | 2, 5 | mtbiri 326 | . . . 4 ⊢ (𝑎 ∈ No → ¬ 𝑎𝑅𝑎) |
7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ No ) → ¬ 𝑎𝑅𝑎) |
8 | bdayelon 33898 | . . . . . 6 ⊢ ( bday ‘𝑐) ∈ On | |
9 | ontr1 6297 | . . . . . 6 ⊢ (( bday ‘𝑐) ∈ On → ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐))) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)) |
11 | 3 | lrrecval2 34024 | . . . . . . . 8 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
12 | 11 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
13 | 3 | lrrecval2 34024 | . . . . . . . 8 ⊢ ((𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
14 | 13 | 3adant1 1128 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
15 | 12, 14 | anbi12d 630 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) ↔ (( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)))) |
16 | 3 | lrrecval2 34024 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
17 | 16 | 3adant2 1129 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
18 | 15, 17 | imbi12d 344 | . . . . 5 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) ↔ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)))) |
19 | 10, 18 | mpbiri 257 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
20 | 19 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No )) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
21 | 7, 20 | ispod 5503 | . 2 ⊢ (⊤ → 𝑅 Po No ) |
22 | 21 | mptru 1546 | 1 ⊢ 𝑅 Po No |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∪ cun 3881 class class class wbr 5070 {copab 5132 Po wpo 5492 Oncon0 6251 ‘cfv 6418 No csur 33770 bday cbday 33772 L cleft 33956 R cright 33957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 df-left 33961 df-right 33962 |
This theorem is referenced by: noinds 34029 norecfn 34030 norecov 34031 noxpordpo 34034 no2indslem 34038 no3inds 34042 |
Copyright terms: Public domain | W3C validator |