Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lrrecpo | Structured version Visualization version GIF version |
Description: Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecpo | ⊢ 𝑅 Po No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayelon 33971 | . . . . . 6 ⊢ ( bday ‘𝑎) ∈ On | |
2 | 1 | onirri 6373 | . . . . 5 ⊢ ¬ ( bday ‘𝑎) ∈ ( bday ‘𝑎) |
3 | lrrec.1 | . . . . . . 7 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
4 | 3 | lrrecval2 34097 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑎 ∈ No ) → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
5 | 4 | anidms 567 | . . . . 5 ⊢ (𝑎 ∈ No → (𝑎𝑅𝑎 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑎))) |
6 | 2, 5 | mtbiri 327 | . . . 4 ⊢ (𝑎 ∈ No → ¬ 𝑎𝑅𝑎) |
7 | 6 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ No ) → ¬ 𝑎𝑅𝑎) |
8 | bdayelon 33971 | . . . . . 6 ⊢ ( bday ‘𝑐) ∈ On | |
9 | ontr1 6312 | . . . . . 6 ⊢ (( bday ‘𝑐) ∈ On → ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐))) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)) |
11 | 3 | lrrecval2 34097 | . . . . . . . 8 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
12 | 11 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑏 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑏))) |
13 | 3 | lrrecval2 34097 | . . . . . . . 8 ⊢ ((𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
14 | 13 | 3adant1 1129 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑏𝑅𝑐 ↔ ( bday ‘𝑏) ∈ ( bday ‘𝑐))) |
15 | 12, 14 | anbi12d 631 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) ↔ (( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)))) |
16 | 3 | lrrecval2 34097 | . . . . . . 7 ⊢ ((𝑎 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
17 | 16 | 3adant2 1130 | . . . . . 6 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (𝑎𝑅𝑐 ↔ ( bday ‘𝑎) ∈ ( bday ‘𝑐))) |
18 | 15, 17 | imbi12d 345 | . . . . 5 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) ↔ ((( bday ‘𝑎) ∈ ( bday ‘𝑏) ∧ ( bday ‘𝑏) ∈ ( bday ‘𝑐)) → ( bday ‘𝑎) ∈ ( bday ‘𝑐)))) |
19 | 10, 18 | mpbiri 257 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
20 | 19 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No )) → ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
21 | 7, 20 | ispod 5512 | . 2 ⊢ (⊤ → 𝑅 Po No ) |
22 | 21 | mptru 1546 | 1 ⊢ 𝑅 Po No |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∪ cun 3885 class class class wbr 5074 {copab 5136 Po wpo 5501 Oncon0 6266 ‘cfv 6433 No csur 33843 bday cbday 33845 L cleft 34029 R cright 34030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 df-made 34031 df-old 34032 df-left 34034 df-right 34035 |
This theorem is referenced by: noinds 34102 norecfn 34103 norecov 34104 noxpordpo 34107 no2indslem 34111 no3inds 34115 |
Copyright terms: Public domain | W3C validator |