Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issald | Structured version Visualization version GIF version |
Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
issald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
issald.z | ⊢ (𝜑 → ∅ ∈ 𝑆) |
issald.x | ⊢ 𝑋 = ∪ 𝑆 |
issald.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) |
issald.u | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) |
Ref | Expression |
---|---|
issald | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issald.z | . 2 ⊢ (𝜑 → ∅ ∈ 𝑆) | |
2 | issald.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝑆 | |
3 | 2 | eqcomi 2747 | . . . . 5 ⊢ ∪ 𝑆 = 𝑋 |
4 | 3 | difeq1i 4053 | . . . 4 ⊢ (∪ 𝑆 ∖ 𝑦) = (𝑋 ∖ 𝑦) |
5 | issald.d | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | |
6 | 4, 5 | eqeltrid 2843 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
7 | 6 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
8 | issald.u | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) | |
9 | 8 | 3expia 1120 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) → (𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
10 | 9 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
11 | issald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
12 | issal 43855 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
14 | 1, 7, 10, 13 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ωcom 7712 ≼ cdom 8731 SAlgcsalg 43849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 df-salg 43850 |
This theorem is referenced by: salexct 43873 issalnnd 43884 |
Copyright terms: Public domain | W3C validator |