|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issald | Structured version Visualization version GIF version | ||
| Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) | 
| Ref | Expression | 
|---|---|
| issald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) | 
| issald.z | ⊢ (𝜑 → ∅ ∈ 𝑆) | 
| issald.x | ⊢ 𝑋 = ∪ 𝑆 | 
| issald.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | 
| issald.u | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) | 
| Ref | Expression | 
|---|---|
| issald | ⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issald.z | . 2 ⊢ (𝜑 → ∅ ∈ 𝑆) | |
| 2 | issald.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝑆 | |
| 3 | 2 | eqcomi 2745 | . . . . 5 ⊢ ∪ 𝑆 = 𝑋 | 
| 4 | 3 | difeq1i 4121 | . . . 4 ⊢ (∪ 𝑆 ∖ 𝑦) = (𝑋 ∖ 𝑦) | 
| 5 | issald.d | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | |
| 6 | 4, 5 | eqeltrid 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) | 
| 7 | 6 | ralrimiva 3145 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) | 
| 8 | issald.u | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) | |
| 9 | 8 | 3expia 1121 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) → (𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) | 
| 10 | 9 | ralrimiva 3145 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) | 
| 11 | issald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 12 | issal 46334 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | 
| 14 | 1, 7, 10, 13 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∖ cdif 3947 ∅c0 4332 𝒫 cpw 4599 ∪ cuni 4906 class class class wbr 5142 ωcom 7888 ≼ cdom 8984 SAlgcsalg 46328 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-ss 3967 df-pw 4601 df-uni 4907 df-salg 46329 | 
| This theorem is referenced by: salexct 46354 issalnnd 46365 | 
| Copyright terms: Public domain | W3C validator |