| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issald | Structured version Visualization version GIF version | ||
| Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| issald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| issald.z | ⊢ (𝜑 → ∅ ∈ 𝑆) |
| issald.x | ⊢ 𝑋 = ∪ 𝑆 |
| issald.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) |
| issald.u | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| issald | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issald.z | . 2 ⊢ (𝜑 → ∅ ∈ 𝑆) | |
| 2 | issald.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝑆 | |
| 3 | 2 | eqcomi 2738 | . . . . 5 ⊢ ∪ 𝑆 = 𝑋 |
| 4 | 3 | difeq1i 4085 | . . . 4 ⊢ (∪ 𝑆 ∖ 𝑦) = (𝑋 ∖ 𝑦) |
| 5 | issald.d | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | |
| 6 | 4, 5 | eqeltrid 2832 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
| 7 | 6 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
| 8 | issald.u | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) | |
| 9 | 8 | 3expia 1121 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) → (𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
| 10 | 9 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)) |
| 11 | issald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 12 | issal 46312 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
| 14 | 1, 7, 10, 13 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 ωcom 7842 ≼ cdom 8916 SAlgcsalg 46306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-ss 3931 df-pw 4565 df-uni 4872 df-salg 46307 |
| This theorem is referenced by: salexct 46332 issalnnd 46343 |
| Copyright terms: Public domain | W3C validator |