Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issald Structured version   Visualization version   GIF version

Theorem issald 45347
Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
issald.s (𝜑𝑆𝑉)
issald.z (𝜑 → ∅ ∈ 𝑆)
issald.x 𝑋 = 𝑆
issald.d ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)
issald.u ((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)
Assertion
Ref Expression
issald (𝜑𝑆 ∈ SAlg)
Distinct variable groups:   𝑦,𝑆   𝜑,𝑦
Allowed substitution hints:   𝑉(𝑦)   𝑋(𝑦)

Proof of Theorem issald
StepHypRef Expression
1 issald.z . 2 (𝜑 → ∅ ∈ 𝑆)
2 issald.x . . . . . 6 𝑋 = 𝑆
32eqcomi 2739 . . . . 5 𝑆 = 𝑋
43difeq1i 4117 . . . 4 ( 𝑆𝑦) = (𝑋𝑦)
5 issald.d . . . 4 ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)
64, 5eqeltrid 2835 . . 3 ((𝜑𝑦𝑆) → ( 𝑆𝑦) ∈ 𝑆)
76ralrimiva 3144 . 2 (𝜑 → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
8 issald.u . . . 4 ((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)
983expia 1119 . . 3 ((𝜑𝑦 ∈ 𝒫 𝑆) → (𝑦 ≼ ω → 𝑦𝑆))
109ralrimiva 3144 . 2 (𝜑 → ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))
11 issald.s . . 3 (𝜑𝑆𝑉)
12 issal 45328 . . 3 (𝑆𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
1311, 12syl 17 . 2 (𝜑 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
141, 7, 10, 13mpbir3and 1340 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  cdif 3944  c0 4321  𝒫 cpw 4601   cuni 4907   class class class wbr 5147  ωcom 7857  cdom 8939  SAlgcsalg 45322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-dif 3950  df-in 3954  df-ss 3964  df-pw 4603  df-uni 4908  df-salg 45323
This theorem is referenced by:  salexct  45348  issalnnd  45359
  Copyright terms: Public domain W3C validator