![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issalnnd | Structured version Visualization version GIF version |
Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
issalnnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
issalnnd.z | ⊢ (𝜑 → ∅ ∈ 𝑆) |
issalnnd.x | ⊢ 𝑋 = ∪ 𝑆 |
issalnnd.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) |
issalnnd.i | ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
Ref | Expression |
---|---|
issalnnd | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issalnnd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | issalnnd.z | . 2 ⊢ (𝜑 → ∅ ∈ 𝑆) | |
3 | issalnnd.x | . 2 ⊢ 𝑋 = ∪ 𝑆 | |
4 | issalnnd.d | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | |
5 | unieq 4880 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∪ ∅) | |
6 | uni0 4900 | . . . . . . . 8 ⊢ ∪ ∅ = ∅ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ ∅ = ∅) |
8 | 5, 7 | eqtrd 2772 | . . . . . 6 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∅) |
9 | 8 | adantl 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 = ∅) |
10 | 2 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∅ ∈ 𝑆) |
11 | 9, 10 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
12 | 11 | 3ad2antl1 1186 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
13 | neqne 2948 | . . . . 5 ⊢ (¬ 𝑦 = ∅ → 𝑦 ≠ ∅) | |
14 | 13 | adantl 483 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅) |
15 | nnfoctb 43347 | . . . . . 6 ⊢ ((𝑦 ≼ ω ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) | |
16 | 15 | 3ad2antl3 1188 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) |
17 | founiiun 43488 | . . . . . . . . . . 11 ⊢ (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) | |
18 | 17 | adantl 483 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) |
19 | simpll 766 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝜑) | |
20 | fof 6760 | . . . . . . . . . . . . . 14 ⊢ (𝑒:ℕ–onto→𝑦 → 𝑒:ℕ⟶𝑦) | |
21 | 20 | adantl 483 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑦) |
22 | elpwi 4571 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ 𝒫 𝑆 → 𝑦 ⊆ 𝑆) | |
23 | 22 | adantr 482 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑦 ⊆ 𝑆) |
24 | 21, 23 | fssd 6690 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
25 | 24 | adantll 713 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
26 | issalnnd.i | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) | |
27 | 19, 25, 26 | syl2anc 585 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
28 | 18, 27 | eqeltrd 2833 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 ∈ 𝑆) |
29 | 28 | ex 414 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
30 | 29 | adantr 482 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
31 | 30 | 3adantl3 1169 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
32 | 31 | exlimdv 1937 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (∃𝑒 𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
33 | 16, 32 | mpd 15 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∪ 𝑦 ∈ 𝑆) |
34 | 14, 33 | syldan 592 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
35 | 12, 34 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) |
36 | 1, 2, 3, 4, 35 | issald 44664 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2940 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4286 𝒫 cpw 4564 ∪ cuni 4869 ∪ ciun 4958 class class class wbr 5109 ⟶wf 6496 –onto→wfo 6498 ‘cfv 6500 ωcom 7806 ≼ cdom 8887 ℕcn 12161 SAlgcsalg 44639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2703 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-inf2 9585 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-n0 12422 df-z 12508 df-uz 12772 df-salg 44640 |
This theorem is referenced by: dmvolsal 44677 subsalsal 44690 smfresal 45119 |
Copyright terms: Public domain | W3C validator |