| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issalnnd | Structured version Visualization version GIF version | ||
| Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| issalnnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| issalnnd.z | ⊢ (𝜑 → ∅ ∈ 𝑆) |
| issalnnd.x | ⊢ 𝑋 = ∪ 𝑆 |
| issalnnd.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) |
| issalnnd.i | ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| issalnnd | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issalnnd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | issalnnd.z | . 2 ⊢ (𝜑 → ∅ ∈ 𝑆) | |
| 3 | issalnnd.x | . 2 ⊢ 𝑋 = ∪ 𝑆 | |
| 4 | issalnnd.d | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | |
| 5 | unieq 4878 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∪ ∅) | |
| 6 | uni0 4895 | . . . . . . . 8 ⊢ ∪ ∅ = ∅ | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ ∅ = ∅) |
| 8 | 5, 7 | eqtrd 2764 | . . . . . 6 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∅) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 = ∅) |
| 10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∅ ∈ 𝑆) |
| 11 | 9, 10 | eqeltrd 2828 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
| 12 | 11 | 3ad2antl1 1186 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
| 13 | neqne 2933 | . . . . 5 ⊢ (¬ 𝑦 = ∅ → 𝑦 ≠ ∅) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅) |
| 15 | nnfoctb 45036 | . . . . . 6 ⊢ ((𝑦 ≼ ω ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) | |
| 16 | 15 | 3ad2antl3 1188 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) |
| 17 | founiiun 45167 | . . . . . . . . . . 11 ⊢ (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) | |
| 18 | 17 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) |
| 19 | simpll 766 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝜑) | |
| 20 | fof 6754 | . . . . . . . . . . . . . 14 ⊢ (𝑒:ℕ–onto→𝑦 → 𝑒:ℕ⟶𝑦) | |
| 21 | 20 | adantl 481 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑦) |
| 22 | elpwi 4566 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ 𝒫 𝑆 → 𝑦 ⊆ 𝑆) | |
| 23 | 22 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑦 ⊆ 𝑆) |
| 24 | 21, 23 | fssd 6687 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
| 25 | 24 | adantll 714 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
| 26 | issalnnd.i | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) | |
| 27 | 19, 25, 26 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
| 28 | 18, 27 | eqeltrd 2828 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 ∈ 𝑆) |
| 29 | 28 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
| 31 | 30 | 3adantl3 1169 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
| 32 | 31 | exlimdv 1933 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (∃𝑒 𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
| 33 | 16, 32 | mpd 15 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∪ 𝑦 ∈ 𝑆) |
| 34 | 14, 33 | syldan 591 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
| 35 | 12, 34 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) |
| 36 | 1, 2, 3, 4, 35 | issald 46325 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 ∪ cuni 4867 ∪ ciun 4951 class class class wbr 5102 ⟶wf 6495 –onto→wfo 6497 ‘cfv 6499 ωcom 7822 ≼ cdom 8893 ℕcn 12164 SAlgcsalg 46300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-n0 12421 df-z 12508 df-uz 12772 df-salg 46301 |
| This theorem is referenced by: dmvolsal 46338 subsalsal 46351 smfresal 46780 |
| Copyright terms: Public domain | W3C validator |