Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issalnnd Structured version   Visualization version   GIF version

Theorem issalnnd 46350
Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
issalnnd.s (𝜑𝑆𝑉)
issalnnd.z (𝜑 → ∅ ∈ 𝑆)
issalnnd.x 𝑋 = 𝑆
issalnnd.d ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)
issalnnd.i ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
Assertion
Ref Expression
issalnnd (𝜑𝑆 ∈ SAlg)
Distinct variable groups:   𝑆,𝑒,𝑦   𝑒,𝑛,𝑦   𝜑,𝑒,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑉(𝑦,𝑒,𝑛)   𝑋(𝑦,𝑒,𝑛)

Proof of Theorem issalnnd
StepHypRef Expression
1 issalnnd.s . 2 (𝜑𝑆𝑉)
2 issalnnd.z . 2 (𝜑 → ∅ ∈ 𝑆)
3 issalnnd.x . 2 𝑋 = 𝑆
4 issalnnd.d . 2 ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)
5 unieq 4885 . . . . . . 7 (𝑦 = ∅ → 𝑦 = ∅)
6 uni0 4902 . . . . . . . 8 ∅ = ∅
76a1i 11 . . . . . . 7 (𝑦 = ∅ → ∅ = ∅)
85, 7eqtrd 2765 . . . . . 6 (𝑦 = ∅ → 𝑦 = ∅)
98adantl 481 . . . . 5 ((𝜑𝑦 = ∅) → 𝑦 = ∅)
102adantr 480 . . . . 5 ((𝜑𝑦 = ∅) → ∅ ∈ 𝑆)
119, 10eqeltrd 2829 . . . 4 ((𝜑𝑦 = ∅) → 𝑦𝑆)
12113ad2antl1 1186 . . 3 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 = ∅) → 𝑦𝑆)
13 neqne 2934 . . . . 5 𝑦 = ∅ → 𝑦 ≠ ∅)
1413adantl 481 . . . 4 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅)
15 nnfoctb 45049 . . . . . 6 ((𝑦 ≼ ω ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto𝑦)
16153ad2antl3 1188 . . . . 5 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto𝑦)
17 founiiun 45180 . . . . . . . . . . 11 (𝑒:ℕ–onto𝑦 𝑦 = 𝑛 ∈ ℕ (𝑒𝑛))
1817adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑦 = 𝑛 ∈ ℕ (𝑒𝑛))
19 simpll 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝜑)
20 fof 6775 . . . . . . . . . . . . . 14 (𝑒:ℕ–onto𝑦𝑒:ℕ⟶𝑦)
2120adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝒫 𝑆𝑒:ℕ–onto𝑦) → 𝑒:ℕ⟶𝑦)
22 elpwi 4573 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑆𝑦𝑆)
2322adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝒫 𝑆𝑒:ℕ–onto𝑦) → 𝑦𝑆)
2421, 23fssd 6708 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 𝑆𝑒:ℕ–onto𝑦) → 𝑒:ℕ⟶𝑆)
2524adantll 714 . . . . . . . . . . 11 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑒:ℕ⟶𝑆)
26 issalnnd.i . . . . . . . . . . 11 ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
2719, 25, 26syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
2818, 27eqeltrd 2829 . . . . . . . . 9 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto𝑦) → 𝑦𝑆)
2928ex 412 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 𝑆) → (𝑒:ℕ–onto𝑦 𝑦𝑆))
3029adantr 480 . . . . . . 7 (((𝜑𝑦 ∈ 𝒫 𝑆) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto𝑦 𝑦𝑆))
31303adantl3 1169 . . . . . 6 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto𝑦 𝑦𝑆))
3231exlimdv 1933 . . . . 5 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (∃𝑒 𝑒:ℕ–onto𝑦 𝑦𝑆))
3316, 32mpd 15 . . . 4 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → 𝑦𝑆)
3414, 33syldan 591 . . 3 (((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦𝑆)
3512, 34pm2.61dan 812 . 2 ((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)
361, 2, 3, 4, 35issald 46338 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  cdif 3914  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   ciun 4958   class class class wbr 5110  wf 6510  ontowfo 6512  cfv 6514  ωcom 7845  cdom 8919  cn 12193  SAlgcsalg 46313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-salg 46314
This theorem is referenced by:  dmvolsal  46351  subsalsal  46364  smfresal  46793
  Copyright terms: Public domain W3C validator