![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issalnnd | Structured version Visualization version GIF version |
Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
issalnnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
issalnnd.z | ⊢ (𝜑 → ∅ ∈ 𝑆) |
issalnnd.x | ⊢ 𝑋 = ∪ 𝑆 |
issalnnd.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) |
issalnnd.i | ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
Ref | Expression |
---|---|
issalnnd | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issalnnd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | issalnnd.z | . 2 ⊢ (𝜑 → ∅ ∈ 𝑆) | |
3 | issalnnd.x | . 2 ⊢ 𝑋 = ∪ 𝑆 | |
4 | issalnnd.d | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | |
5 | unieq 4919 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∪ ∅) | |
6 | uni0 4939 | . . . . . . . 8 ⊢ ∪ ∅ = ∅ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ ∅ = ∅) |
8 | 5, 7 | eqtrd 2772 | . . . . . 6 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∅) |
9 | 8 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 = ∅) |
10 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∅ ∈ 𝑆) |
11 | 9, 10 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
12 | 11 | 3ad2antl1 1185 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
13 | neqne 2948 | . . . . 5 ⊢ (¬ 𝑦 = ∅ → 𝑦 ≠ ∅) | |
14 | 13 | adantl 482 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅) |
15 | nnfoctb 43724 | . . . . . 6 ⊢ ((𝑦 ≼ ω ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) | |
16 | 15 | 3ad2antl3 1187 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) |
17 | founiiun 43865 | . . . . . . . . . . 11 ⊢ (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) | |
18 | 17 | adantl 482 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) |
19 | simpll 765 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝜑) | |
20 | fof 6805 | . . . . . . . . . . . . . 14 ⊢ (𝑒:ℕ–onto→𝑦 → 𝑒:ℕ⟶𝑦) | |
21 | 20 | adantl 482 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑦) |
22 | elpwi 4609 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ 𝒫 𝑆 → 𝑦 ⊆ 𝑆) | |
23 | 22 | adantr 481 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑦 ⊆ 𝑆) |
24 | 21, 23 | fssd 6735 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
25 | 24 | adantll 712 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
26 | issalnnd.i | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) | |
27 | 19, 25, 26 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
28 | 18, 27 | eqeltrd 2833 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 ∈ 𝑆) |
29 | 28 | ex 413 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
30 | 29 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
31 | 30 | 3adantl3 1168 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
32 | 31 | exlimdv 1936 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (∃𝑒 𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
33 | 16, 32 | mpd 15 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∪ 𝑦 ∈ 𝑆) |
34 | 14, 33 | syldan 591 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
35 | 12, 34 | pm2.61dan 811 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) |
36 | 1, 2, 3, 4, 35 | issald 45039 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 ∪ cuni 4908 ∪ ciun 4997 class class class wbr 5148 ⟶wf 6539 –onto→wfo 6541 ‘cfv 6543 ωcom 7854 ≼ cdom 8936 ℕcn 12211 SAlgcsalg 45014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-salg 45015 |
This theorem is referenced by: dmvolsal 45052 subsalsal 45065 smfresal 45494 |
Copyright terms: Public domain | W3C validator |