Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issalnnd | Structured version Visualization version GIF version |
Description: Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
issalnnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
issalnnd.z | ⊢ (𝜑 → ∅ ∈ 𝑆) |
issalnnd.x | ⊢ 𝑋 = ∪ 𝑆 |
issalnnd.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) |
issalnnd.i | ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
Ref | Expression |
---|---|
issalnnd | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issalnnd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | issalnnd.z | . 2 ⊢ (𝜑 → ∅ ∈ 𝑆) | |
3 | issalnnd.x | . 2 ⊢ 𝑋 = ∪ 𝑆 | |
4 | issalnnd.d | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) | |
5 | unieq 4850 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∪ ∅) | |
6 | uni0 4869 | . . . . . . . 8 ⊢ ∪ ∅ = ∅ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑦 = ∅ → ∪ ∅ = ∅) |
8 | 5, 7 | eqtrd 2778 | . . . . . 6 ⊢ (𝑦 = ∅ → ∪ 𝑦 = ∅) |
9 | 8 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 = ∅) |
10 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∅ ∈ 𝑆) |
11 | 9, 10 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
12 | 11 | 3ad2antl1 1184 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
13 | neqne 2951 | . . . . 5 ⊢ (¬ 𝑦 = ∅ → 𝑦 ≠ ∅) | |
14 | 13 | adantl 482 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅) |
15 | nnfoctb 42595 | . . . . . 6 ⊢ ((𝑦 ≼ ω ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) | |
16 | 15 | 3ad2antl3 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∃𝑒 𝑒:ℕ–onto→𝑦) |
17 | founiiun 42715 | . . . . . . . . . . 11 ⊢ (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) | |
18 | 17 | adantl 482 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 = ∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) |
19 | simpll 764 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝜑) | |
20 | fof 6688 | . . . . . . . . . . . . . 14 ⊢ (𝑒:ℕ–onto→𝑦 → 𝑒:ℕ⟶𝑦) | |
21 | 20 | adantl 482 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑦) |
22 | elpwi 4542 | . . . . . . . . . . . . . 14 ⊢ (𝑦 ∈ 𝒫 𝑆 → 𝑦 ⊆ 𝑆) | |
23 | 22 | adantr 481 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑦 ⊆ 𝑆) |
24 | 21, 23 | fssd 6618 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
25 | 24 | adantll 711 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → 𝑒:ℕ⟶𝑆) |
26 | issalnnd.i | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) | |
27 | 19, 25, 26 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) |
28 | 18, 27 | eqeltrd 2839 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑒:ℕ–onto→𝑦) → ∪ 𝑦 ∈ 𝑆) |
29 | 28 | ex 413 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
30 | 29 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
31 | 30 | 3adantl3 1167 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
32 | 31 | exlimdv 1936 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → (∃𝑒 𝑒:ℕ–onto→𝑦 → ∪ 𝑦 ∈ 𝑆)) |
33 | 16, 32 | mpd 15 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ 𝑦 ≠ ∅) → ∪ 𝑦 ∈ 𝑆) |
34 | 14, 33 | syldan 591 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) ∧ ¬ 𝑦 = ∅) → ∪ 𝑦 ∈ 𝑆) |
35 | 12, 34 | pm2.61dan 810 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) |
36 | 1, 2, 3, 4, 35 | issald 43872 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 ∪ ciun 4924 class class class wbr 5074 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 ωcom 7712 ≼ cdom 8731 ℕcn 11973 SAlgcsalg 43849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-salg 43850 |
This theorem is referenced by: dmvolsal 43885 subsalsal 43898 smfresal 44322 |
Copyright terms: Public domain | W3C validator |