![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgencl | Structured version Visualization version GIF version |
Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salgencl | ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salgenval 41288 | . 2 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | |
2 | ssrab2 3887 | . . . 4 ⊢ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ SAlg | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ SAlg) |
4 | salgenn0 41296 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) | |
5 | unieq 4640 | . . . . . . . . 9 ⊢ (𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡) | |
6 | 5 | eqeq1d 2805 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋)) |
7 | sseq2 3827 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡)) | |
8 | 6, 7 | anbi12d 625 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
9 | 8 | elrab 3560 | . . . . . 6 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
10 | 9 | biimpi 208 | . . . . 5 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
11 | 10 | simprld 789 | . . . 4 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → ∪ 𝑡 = ∪ 𝑋) |
12 | 11 | adantl 474 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) → ∪ 𝑡 = ∪ 𝑋) |
13 | 3, 4, 12 | intsal 41295 | . 2 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ∈ SAlg) |
14 | 1, 13 | eqeltrd 2882 | 1 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3097 ⊆ wss 3773 ∪ cuni 4632 ∩ cint 4671 ‘cfv 6105 SAlgcsalg 41275 SalGencsalgen 41279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-int 4672 df-br 4848 df-opab 4910 df-mpt 4927 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-iota 6068 df-fun 6107 df-fv 6113 df-salg 41276 df-salgen 41280 |
This theorem is referenced by: unisalgen 41305 dfsalgen2 41306 salgencld 41314 |
Copyright terms: Public domain | W3C validator |