Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgencl Structured version   Visualization version   GIF version

Theorem salgencl 42972
Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgencl (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)

Proof of Theorem salgencl
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 salgenval 42963 . 2 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
2 ssrab2 4007 . . . 4 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ SAlg
32a1i 11 . . 3 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ SAlg)
4 salgenn0 42971 . . 3 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
5 unieq 4811 . . . . . . . . 9 (𝑠 = 𝑡 𝑠 = 𝑡)
65eqeq1d 2800 . . . . . . . 8 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
7 sseq2 3941 . . . . . . . 8 (𝑠 = 𝑡 → (𝑋𝑠𝑋𝑡))
86, 7anbi12d 633 . . . . . . 7 (𝑠 = 𝑡 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑡 = 𝑋𝑋𝑡)))
98elrab 3628 . . . . . 6 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
109biimpi 219 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
1110simprld 771 . . . 4 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑡 = 𝑋)
1211adantl 485 . . 3 ((𝑋𝑉𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑡 = 𝑋)
133, 4, 12intsal 42970 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ SAlg)
141, 13eqeltrd 2890 1 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  wss 3881   cuni 4800   cint 4838  cfv 6324  SAlgcsalg 42950  SalGencsalgen 42954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-salg 42951  df-salgen 42955
This theorem is referenced by:  unisalgen  42980  dfsalgen2  42981  salgencld  42989
  Copyright terms: Public domain W3C validator