| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgencl | Structured version Visualization version GIF version | ||
| Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salgencl | ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgenval 46424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | |
| 2 | ssrab2 4029 | . . . 4 ⊢ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ SAlg | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ SAlg) |
| 4 | salgenn0 46434 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) | |
| 5 | unieq 4869 | . . . . . . . . 9 ⊢ (𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡) | |
| 6 | 5 | eqeq1d 2733 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋)) |
| 7 | sseq2 3956 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡)) | |
| 8 | 6, 7 | anbi12d 632 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
| 9 | 8 | elrab 3642 | . . . . . 6 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
| 10 | 9 | biimpi 216 | . . . . 5 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
| 11 | 10 | simprld 771 | . . . 4 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → ∪ 𝑡 = ∪ 𝑋) |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) → ∪ 𝑡 = ∪ 𝑋) |
| 13 | 3, 4, 12 | intsal 46433 | . 2 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ∈ SAlg) |
| 14 | 1, 13 | eqeltrd 2831 | 1 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ∪ cuni 4858 ∩ cint 4897 ‘cfv 6487 SAlgcsalg 46411 SalGencsalgen 46415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-salg 46412 df-salgen 46416 |
| This theorem is referenced by: unisalgen 46443 dfsalgen2 46444 salgencld 46452 |
| Copyright terms: Public domain | W3C validator |