Step | Hyp | Ref
| Expression |
1 | | salgenval 45335 |
. 2
β’ (π β π β (SalGenβπ) = β© {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )}) |
2 | | ssrab2 4076 |
. . . 4
β’ {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )} β SAlg |
3 | 2 | a1i 11 |
. . 3
β’ (π β π β {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )} β SAlg) |
4 | | salgenn0 45345 |
. . 3
β’ (π β π β {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )} β β
) |
5 | | unieq 4918 |
. . . . . . . . 9
β’ (π = π‘ β βͺ π = βͺ
π‘) |
6 | 5 | eqeq1d 2732 |
. . . . . . . 8
β’ (π = π‘ β (βͺ π = βͺ
π β βͺ π‘ =
βͺ π)) |
7 | | sseq2 4007 |
. . . . . . . 8
β’ (π = π‘ β (π β π β π β π‘)) |
8 | 6, 7 | anbi12d 629 |
. . . . . . 7
β’ (π = π‘ β ((βͺ π = βͺ
π β§ π β π ) β (βͺ π‘ = βͺ
π β§ π β π‘))) |
9 | 8 | elrab 3682 |
. . . . . 6
β’ (π‘ β {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )} β (π‘ β SAlg β§ (βͺ π‘ =
βͺ π β§ π β π‘))) |
10 | 9 | biimpi 215 |
. . . . 5
β’ (π‘ β {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )} β (π‘ β SAlg β§ (βͺ π‘ =
βͺ π β§ π β π‘))) |
11 | 10 | simprld 768 |
. . . 4
β’ (π‘ β {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )} β βͺ π‘ = βͺ
π) |
12 | 11 | adantl 480 |
. . 3
β’ ((π β π β§ π‘ β {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )}) β βͺ π‘ = βͺ
π) |
13 | 3, 4, 12 | intsal 45344 |
. 2
β’ (π β π β β© {π β SAlg β£ (βͺ π =
βͺ π β§ π β π )} β SAlg) |
14 | 1, 13 | eqeltrd 2831 |
1
β’ (π β π β (SalGenβπ) β SAlg) |