MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrel Structured version   Visualization version   GIF version

Theorem ltrel 11352
Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel Rel <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 11351 . 2 < ⊆ (ℝ* × ℝ*)
2 relxp 5718 . 2 Rel (ℝ* × ℝ*)
3 relss 5805 . 2 ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < ))
41, 2, 3mp2 9 1 Rel <
Colors of variables: wff setvar class
Syntax hints:  wss 3976   × cxp 5698  Rel wrel 5705  *cxr 11323   < clt 11324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-pr 4651  df-opab 5229  df-xp 5706  df-rel 5707  df-xr 11328  df-ltxr 11329
This theorem is referenced by:  dflt2  13210  gtiso  32712
  Copyright terms: Public domain W3C validator