MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrel Structured version   Visualization version   GIF version

Theorem ltrel 11302
Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel Rel <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 11301 . 2 < ⊆ (ℝ* × ℝ*)
2 relxp 5677 . 2 Rel (ℝ* × ℝ*)
3 relss 5765 . 2 ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < ))
41, 2, 3mp2 9 1 Rel <
Colors of variables: wff setvar class
Syntax hints:  wss 3931   × cxp 5657  Rel wrel 5664  *cxr 11273   < clt 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-ss 3948  df-pr 4609  df-opab 5187  df-xp 5665  df-rel 5666  df-xr 11278  df-ltxr 11279
This theorem is referenced by:  dflt2  13169  gtiso  32683
  Copyright terms: Public domain W3C validator