Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version |
Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 11036 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 5607 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5692 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 × cxp 5587 Rel wrel 5594 ℝ*cxr 11008 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-pr 4564 df-opab 5137 df-xp 5595 df-rel 5596 df-xr 11013 df-ltxr 11014 |
This theorem is referenced by: dflt2 12882 gtiso 31033 |
Copyright terms: Public domain | W3C validator |