| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version | ||
| Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltrel | ⊢ Rel < |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelxr 11182 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 2 | relxp 5639 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
| 3 | relss 5728 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 × cxp 5619 Rel wrel 5626 ℝ*cxr 11154 < clt 11155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-pr 4580 df-opab 5158 df-xp 5627 df-rel 5628 df-xr 11159 df-ltxr 11160 |
| This theorem is referenced by: dflt2 13051 gtiso 32688 |
| Copyright terms: Public domain | W3C validator |