| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version | ||
| Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltrel | ⊢ Rel < |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelxr 11301 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 2 | relxp 5677 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
| 3 | relss 5765 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 × cxp 5657 Rel wrel 5664 ℝ*cxr 11273 < clt 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-pr 4609 df-opab 5187 df-xp 5665 df-rel 5666 df-xr 11278 df-ltxr 11279 |
| This theorem is referenced by: dflt2 13169 gtiso 32683 |
| Copyright terms: Public domain | W3C validator |