Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version |
Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 10967 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 5598 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5682 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 × cxp 5578 Rel wrel 5585 ℝ*cxr 10939 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pr 4561 df-opab 5133 df-xp 5586 df-rel 5587 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: dflt2 12811 gtiso 30935 |
Copyright terms: Public domain | W3C validator |