| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version | ||
| Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltrel | ⊢ Rel < |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelxr 11173 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 2 | relxp 5634 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
| 3 | relss 5722 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 × cxp 5614 Rel wrel 5621 ℝ*cxr 11145 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-pr 4579 df-opab 5154 df-xp 5622 df-rel 5623 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: dflt2 13047 gtiso 32680 |
| Copyright terms: Public domain | W3C validator |