![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version |
Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 11312 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 5696 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5783 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3944 × cxp 5676 Rel wrel 5683 ℝ*cxr 11284 < clt 11285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-un 3949 df-ss 3961 df-pr 4633 df-opab 5212 df-xp 5684 df-rel 5685 df-xr 11289 df-ltxr 11290 |
This theorem is referenced by: dflt2 13167 gtiso 32567 |
Copyright terms: Public domain | W3C validator |