MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrel Structured version   Visualization version   GIF version

Theorem ltrel 11313
Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel Rel <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 11312 . 2 < ⊆ (ℝ* × ℝ*)
2 relxp 5696 . 2 Rel (ℝ* × ℝ*)
3 relss 5783 . 2 ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < ))
41, 2, 3mp2 9 1 Rel <
Colors of variables: wff setvar class
Syntax hints:  wss 3944   × cxp 5676  Rel wrel 5683  *cxr 11284   < clt 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-un 3949  df-ss 3961  df-pr 4633  df-opab 5212  df-xp 5684  df-rel 5685  df-xr 11289  df-ltxr 11290
This theorem is referenced by:  dflt2  13167  gtiso  32567
  Copyright terms: Public domain W3C validator