MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflt2 Structured version   Visualization version   GIF version

Theorem dflt2 12703
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dflt2 < = ( ≤ ∖ I )

Proof of Theorem dflt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrel 10860 . 2 Rel <
2 difss 4032 . . 3 ( ≤ ∖ I ) ⊆ ≤
3 lerel 10862 . . 3 Rel ≤
4 relss 5638 . . 3 (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I )))
52, 3, 4mp2 9 . 2 Rel ( ≤ ∖ I )
6 ltrelxr 10859 . . . 4 < ⊆ (ℝ* × ℝ*)
76brel 5599 . . 3 (𝑥 < 𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
8 lerelxr 10861 . . . . 5 ≤ ⊆ (ℝ* × ℝ*)
92, 8sstri 3896 . . . 4 ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*)
109brel 5599 . . 3 (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrltlen 12701 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
12 equcom 2028 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
13 vex 3402 . . . . . . . . 9 𝑦 ∈ V
1413ideq 5706 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
1512, 14bitr4i 281 . . . . . . 7 (𝑦 = 𝑥𝑥 I 𝑦)
1615necon3abii 2978 . . . . . 6 (𝑦𝑥 ↔ ¬ 𝑥 I 𝑦)
1716anbi2i 626 . . . . 5 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
1811, 17bitrdi 290 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦)))
19 brdif 5092 . . . 4 (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
2018, 19bitr4di 292 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦))
217, 10, 20pm5.21nii 383 . 2 (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦)
221, 5, 21eqbrriv 5646 1 < = ( ≤ ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1543  wcel 2112  wne 2932  cdif 3850  wss 3853   class class class wbr 5039   I cid 5439   × cxp 5534  Rel wrel 5541  *cxr 10831   < clt 10832  cle 10833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-pre-lttri 10768  ax-pre-lttrn 10769
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838
This theorem is referenced by:  relt  20531  xrslt  30958
  Copyright terms: Public domain W3C validator