![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dflt2 | Structured version Visualization version GIF version |
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
dflt2 | ⊢ < = ( ≤ ∖ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrel 11275 | . 2 ⊢ Rel < | |
2 | difss 4131 | . . 3 ⊢ ( ≤ ∖ I ) ⊆ ≤ | |
3 | lerel 11277 | . . 3 ⊢ Rel ≤ | |
4 | relss 5781 | . . 3 ⊢ (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≤ ∖ I ) |
6 | ltrelxr 11274 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
7 | 6 | brel 5741 | . . 3 ⊢ (𝑥 < 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
8 | lerelxr 11276 | . . . . 5 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
9 | 2, 8 | sstri 3991 | . . . 4 ⊢ ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*) |
10 | 9 | brel 5741 | . . 3 ⊢ (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
11 | xrltlen 13124 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) | |
12 | equcom 2021 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
13 | vex 3478 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
14 | 13 | ideq 5852 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
15 | 12, 14 | bitr4i 277 | . . . . . . 7 ⊢ (𝑦 = 𝑥 ↔ 𝑥 I 𝑦) |
16 | 15 | necon3abii 2987 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑥 I 𝑦) |
17 | 16 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) |
18 | 11, 17 | bitrdi 286 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦))) |
19 | brdif 5201 | . . . 4 ⊢ (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) | |
20 | 18, 19 | bitr4di 288 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦)) |
21 | 7, 10, 20 | pm5.21nii 379 | . 2 ⊢ (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦) |
22 | 1, 5, 21 | eqbrriv 5791 | 1 ⊢ < = ( ≤ ∖ I ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∖ cdif 3945 ⊆ wss 3948 class class class wbr 5148 I cid 5573 × cxp 5674 Rel wrel 5681 ℝ*cxr 11246 < clt 11247 ≤ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: relt 21167 xrslt 32172 |
Copyright terms: Public domain | W3C validator |