Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dflt2 | Structured version Visualization version GIF version |
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
dflt2 | ⊢ < = ( ≤ ∖ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrel 11037 | . 2 ⊢ Rel < | |
2 | difss 4066 | . . 3 ⊢ ( ≤ ∖ I ) ⊆ ≤ | |
3 | lerel 11039 | . . 3 ⊢ Rel ≤ | |
4 | relss 5692 | . . 3 ⊢ (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≤ ∖ I ) |
6 | ltrelxr 11036 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
7 | 6 | brel 5652 | . . 3 ⊢ (𝑥 < 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
8 | lerelxr 11038 | . . . . 5 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
9 | 2, 8 | sstri 3930 | . . . 4 ⊢ ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*) |
10 | 9 | brel 5652 | . . 3 ⊢ (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
11 | xrltlen 12880 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) | |
12 | equcom 2021 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
13 | vex 3436 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
14 | 13 | ideq 5761 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
15 | 12, 14 | bitr4i 277 | . . . . . . 7 ⊢ (𝑦 = 𝑥 ↔ 𝑥 I 𝑦) |
16 | 15 | necon3abii 2990 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑥 I 𝑦) |
17 | 16 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) |
18 | 11, 17 | bitrdi 287 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦))) |
19 | brdif 5127 | . . . 4 ⊢ (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) | |
20 | 18, 19 | bitr4di 289 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦)) |
21 | 7, 10, 20 | pm5.21nii 380 | . 2 ⊢ (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦) |
22 | 1, 5, 21 | eqbrriv 5701 | 1 ⊢ < = ( ≤ ∖ I ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ⊆ wss 3887 class class class wbr 5074 I cid 5488 × cxp 5587 Rel wrel 5594 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: relt 20820 xrslt 31285 |
Copyright terms: Public domain | W3C validator |