MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflt2 Structured version   Visualization version   GIF version

Theorem dflt2 13162
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dflt2 < = ( ≤ ∖ I )

Proof of Theorem dflt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrel 11295 . 2 Rel <
2 difss 4111 . . 3 ( ≤ ∖ I ) ⊆ ≤
3 lerel 11297 . . 3 Rel ≤
4 relss 5760 . . 3 (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I )))
52, 3, 4mp2 9 . 2 Rel ( ≤ ∖ I )
6 ltrelxr 11294 . . . 4 < ⊆ (ℝ* × ℝ*)
76brel 5719 . . 3 (𝑥 < 𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
8 lerelxr 11296 . . . . 5 ≤ ⊆ (ℝ* × ℝ*)
92, 8sstri 3968 . . . 4 ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*)
109brel 5719 . . 3 (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrltlen 13160 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
12 equcom 2017 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
13 vex 3463 . . . . . . . . 9 𝑦 ∈ V
1413ideq 5832 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
1512, 14bitr4i 278 . . . . . . 7 (𝑦 = 𝑥𝑥 I 𝑦)
1615necon3abii 2978 . . . . . 6 (𝑦𝑥 ↔ ¬ 𝑥 I 𝑦)
1716anbi2i 623 . . . . 5 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
1811, 17bitrdi 287 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦)))
19 brdif 5172 . . . 4 (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
2018, 19bitr4di 289 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦))
217, 10, 20pm5.21nii 378 . 2 (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦)
221, 5, 21eqbrriv 5770 1 < = ( ≤ ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  wss 3926   class class class wbr 5119   I cid 5547   × cxp 5652  Rel wrel 5659  *cxr 11266   < clt 11267  cle 11268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273
This theorem is referenced by:  relt  21573  xrslt  32945
  Copyright terms: Public domain W3C validator