| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dflt2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| dflt2 | ⊢ < = ( ≤ ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrel 11171 | . 2 ⊢ Rel < | |
| 2 | difss 4086 | . . 3 ⊢ ( ≤ ∖ I ) ⊆ ≤ | |
| 3 | lerel 11173 | . . 3 ⊢ Rel ≤ | |
| 4 | relss 5722 | . . 3 ⊢ (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I ))) | |
| 5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≤ ∖ I ) |
| 6 | ltrelxr 11170 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 7 | 6 | brel 5681 | . . 3 ⊢ (𝑥 < 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
| 8 | lerelxr 11172 | . . . . 5 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 9 | 2, 8 | sstri 3944 | . . . 4 ⊢ ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*) |
| 10 | 9 | brel 5681 | . . 3 ⊢ (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
| 11 | xrltlen 13042 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) | |
| 12 | equcom 2019 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 13 | vex 3440 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 14 | 13 | ideq 5792 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 15 | 12, 14 | bitr4i 278 | . . . . . . 7 ⊢ (𝑦 = 𝑥 ↔ 𝑥 I 𝑦) |
| 16 | 15 | necon3abii 2974 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑥 I 𝑦) |
| 17 | 16 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) |
| 18 | 11, 17 | bitrdi 287 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦))) |
| 19 | brdif 5144 | . . . 4 ⊢ (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) | |
| 20 | 18, 19 | bitr4di 289 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦)) |
| 21 | 7, 10, 20 | pm5.21nii 378 | . 2 ⊢ (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦) |
| 22 | 1, 5, 21 | eqbrriv 5731 | 1 ⊢ < = ( ≤ ∖ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 ⊆ wss 3902 class class class wbr 5091 I cid 5510 × cxp 5614 Rel wrel 5621 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 |
| This theorem is referenced by: relt 21550 xrslt 32983 |
| Copyright terms: Public domain | W3C validator |