![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dflt2 | Structured version Visualization version GIF version |
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
dflt2 | ⊢ < = ( ≤ ∖ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrel 11275 | . 2 ⊢ Rel < | |
2 | difss 4124 | . . 3 ⊢ ( ≤ ∖ I ) ⊆ ≤ | |
3 | lerel 11277 | . . 3 ⊢ Rel ≤ | |
4 | relss 5772 | . . 3 ⊢ (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≤ ∖ I ) |
6 | ltrelxr 11274 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
7 | 6 | brel 5732 | . . 3 ⊢ (𝑥 < 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
8 | lerelxr 11276 | . . . . 5 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
9 | 2, 8 | sstri 3984 | . . . 4 ⊢ ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*) |
10 | 9 | brel 5732 | . . 3 ⊢ (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
11 | xrltlen 13126 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) | |
12 | equcom 2013 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
13 | vex 3470 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
14 | 13 | ideq 5843 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
15 | 12, 14 | bitr4i 278 | . . . . . . 7 ⊢ (𝑦 = 𝑥 ↔ 𝑥 I 𝑦) |
16 | 15 | necon3abii 2979 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑥 I 𝑦) |
17 | 16 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) |
18 | 11, 17 | bitrdi 287 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦))) |
19 | brdif 5192 | . . . 4 ⊢ (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) | |
20 | 18, 19 | bitr4di 289 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦)) |
21 | 7, 10, 20 | pm5.21nii 378 | . 2 ⊢ (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦) |
22 | 1, 5, 21 | eqbrriv 5782 | 1 ⊢ < = ( ≤ ∖ I ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∖ cdif 3938 ⊆ wss 3941 class class class wbr 5139 I cid 5564 × cxp 5665 Rel wrel 5672 ℝ*cxr 11246 < clt 11247 ≤ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: relt 21497 xrslt 32669 |
Copyright terms: Public domain | W3C validator |