MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflt2 Structured version   Visualization version   GIF version

Theorem dflt2 12544
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dflt2 < = ( ≤ ∖ I )

Proof of Theorem dflt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrel 10706 . 2 Rel <
2 difss 4111 . . 3 ( ≤ ∖ I ) ⊆ ≤
3 lerel 10708 . . 3 Rel ≤
4 relss 5659 . . 3 (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I )))
52, 3, 4mp2 9 . 2 Rel ( ≤ ∖ I )
6 ltrelxr 10705 . . . 4 < ⊆ (ℝ* × ℝ*)
76brel 5620 . . 3 (𝑥 < 𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
8 lerelxr 10707 . . . . 5 ≤ ⊆ (ℝ* × ℝ*)
92, 8sstri 3979 . . . 4 ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*)
109brel 5620 . . 3 (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrltlen 12542 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
12 equcom 2024 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
13 vex 3500 . . . . . . . . 9 𝑦 ∈ V
1413ideq 5726 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
1512, 14bitr4i 280 . . . . . . 7 (𝑦 = 𝑥𝑥 I 𝑦)
1615necon3abii 3065 . . . . . 6 (𝑦𝑥 ↔ ¬ 𝑥 I 𝑦)
1716anbi2i 624 . . . . 5 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
1811, 17syl6bb 289 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦)))
19 brdif 5122 . . . 4 (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
2018, 19syl6bbr 291 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦))
217, 10, 20pm5.21nii 382 . 2 (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦)
221, 5, 21eqbrriv 5667 1 < = ( ≤ ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1536  wcel 2113  wne 3019  cdif 3936  wss 3939   class class class wbr 5069   I cid 5462   × cxp 5556  Rel wrel 5563  *cxr 10677   < clt 10678  cle 10679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684
This theorem is referenced by:  relt  20762  xrslt  30667
  Copyright terms: Public domain W3C validator