MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflt2 Structured version   Visualization version   GIF version

Theorem dflt2 12984
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dflt2 < = ( ≤ ∖ I )

Proof of Theorem dflt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrel 11139 . 2 Rel <
2 difss 4079 . . 3 ( ≤ ∖ I ) ⊆ ≤
3 lerel 11141 . . 3 Rel ≤
4 relss 5724 . . 3 (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I )))
52, 3, 4mp2 9 . 2 Rel ( ≤ ∖ I )
6 ltrelxr 11138 . . . 4 < ⊆ (ℝ* × ℝ*)
76brel 5684 . . 3 (𝑥 < 𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
8 lerelxr 11140 . . . . 5 ≤ ⊆ (ℝ* × ℝ*)
92, 8sstri 3941 . . . 4 ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*)
109brel 5684 . . 3 (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrltlen 12982 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
12 equcom 2020 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
13 vex 3445 . . . . . . . . 9 𝑦 ∈ V
1413ideq 5795 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
1512, 14bitr4i 277 . . . . . . 7 (𝑦 = 𝑥𝑥 I 𝑦)
1615necon3abii 2987 . . . . . 6 (𝑦𝑥 ↔ ¬ 𝑥 I 𝑦)
1716anbi2i 623 . . . . 5 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
1811, 17bitrdi 286 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦)))
19 brdif 5146 . . . 4 (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
2018, 19bitr4di 288 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦))
217, 10, 20pm5.21nii 379 . 2 (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦)
221, 5, 21eqbrriv 5734 1 < = ( ≤ ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1540  wcel 2105  wne 2940  cdif 3895  wss 3898   class class class wbr 5093   I cid 5518   × cxp 5619  Rel wrel 5626  *cxr 11110   < clt 11111  cle 11112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-pre-lttri 11047  ax-pre-lttrn 11048
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-po 5533  df-so 5534  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117
This theorem is referenced by:  relt  20927  xrslt  31572
  Copyright terms: Public domain W3C validator