| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dflt2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| dflt2 | ⊢ < = ( ≤ ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrel 11196 | . 2 ⊢ Rel < | |
| 2 | difss 4089 | . . 3 ⊢ ( ≤ ∖ I ) ⊆ ≤ | |
| 3 | lerel 11198 | . . 3 ⊢ Rel ≤ | |
| 4 | relss 5729 | . . 3 ⊢ (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I ))) | |
| 5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≤ ∖ I ) |
| 6 | ltrelxr 11195 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 7 | 6 | brel 5688 | . . 3 ⊢ (𝑥 < 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
| 8 | lerelxr 11197 | . . . . 5 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 9 | 2, 8 | sstri 3947 | . . . 4 ⊢ ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*) |
| 10 | 9 | brel 5688 | . . 3 ⊢ (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
| 11 | xrltlen 13066 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) | |
| 12 | equcom 2018 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 13 | vex 3442 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 14 | 13 | ideq 5799 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 15 | 12, 14 | bitr4i 278 | . . . . . . 7 ⊢ (𝑦 = 𝑥 ↔ 𝑥 I 𝑦) |
| 16 | 15 | necon3abii 2971 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑥 I 𝑦) |
| 17 | 16 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) |
| 18 | 11, 17 | bitrdi 287 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦))) |
| 19 | brdif 5148 | . . . 4 ⊢ (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦)) | |
| 20 | 18, 19 | bitr4di 289 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦)) |
| 21 | 7, 10, 20 | pm5.21nii 378 | . 2 ⊢ (𝑥 < 𝑦 ↔ 𝑥( ≤ ∖ I )𝑦) |
| 22 | 1, 5, 21 | eqbrriv 5738 | 1 ⊢ < = ( ≤ ∖ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 ⊆ wss 3905 class class class wbr 5095 I cid 5517 × cxp 5621 Rel wrel 5628 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: relt 21540 xrslt 32974 |
| Copyright terms: Public domain | W3C validator |