MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflt2 Structured version   Visualization version   GIF version

Theorem dflt2 13049
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.)
Assertion
Ref Expression
dflt2 < = ( ≤ ∖ I )

Proof of Theorem dflt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrel 11181 . 2 Rel <
2 difss 4085 . . 3 ( ≤ ∖ I ) ⊆ ≤
3 lerel 11183 . . 3 Rel ≤
4 relss 5726 . . 3 (( ≤ ∖ I ) ⊆ ≤ → (Rel ≤ → Rel ( ≤ ∖ I )))
52, 3, 4mp2 9 . 2 Rel ( ≤ ∖ I )
6 ltrelxr 11180 . . . 4 < ⊆ (ℝ* × ℝ*)
76brel 5684 . . 3 (𝑥 < 𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
8 lerelxr 11182 . . . . 5 ≤ ⊆ (ℝ* × ℝ*)
92, 8sstri 3940 . . . 4 ( ≤ ∖ I ) ⊆ (ℝ* × ℝ*)
109brel 5684 . . 3 (𝑥( ≤ ∖ I )𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
11 xrltlen 13047 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
12 equcom 2019 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
13 vex 3441 . . . . . . . . 9 𝑦 ∈ V
1413ideq 5796 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
1512, 14bitr4i 278 . . . . . . 7 (𝑦 = 𝑥𝑥 I 𝑦)
1615necon3abii 2975 . . . . . 6 (𝑦𝑥 ↔ ¬ 𝑥 I 𝑦)
1716anbi2i 623 . . . . 5 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
1811, 17bitrdi 287 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦)))
19 brdif 5146 . . . 4 (𝑥( ≤ ∖ I )𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 I 𝑦))
2018, 19bitr4di 289 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦))
217, 10, 20pm5.21nii 378 . 2 (𝑥 < 𝑦𝑥( ≤ ∖ I )𝑦)
221, 5, 21eqbrriv 5735 1 < = ( ≤ ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  wss 3898   class class class wbr 5093   I cid 5513   × cxp 5617  Rel wrel 5624  *cxr 11152   < clt 11153  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159
This theorem is referenced by:  relt  21554  xrslt  32995
  Copyright terms: Public domain W3C validator