![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minel | Structured version Visualization version GIF version |
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
minel | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelcm 4488 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ 𝐵) ≠ ∅) | |
2 | 1 | expcom 413 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 → (𝐶 ∩ 𝐵) ≠ ∅)) |
3 | 2 | necon2bd 2962 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐶 ∩ 𝐵) = ∅ → ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 |
This theorem is referenced by: peano5 7932 peano5OLD 7933 fnsuppres 8232 domunfican 9389 unwdomg 9653 dfac5 10198 ccatval2 14626 mreexexlem2d 17703 hauspwpwf1 24016 |
Copyright terms: Public domain | W3C validator |