MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minel Structured version   Visualization version   GIF version

Theorem minel 4472
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
minel ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)

Proof of Theorem minel
StepHypRef Expression
1 inelcm 4471 . . . 4 ((𝐴𝐶𝐴𝐵) → (𝐶𝐵) ≠ ∅)
21expcom 413 . . 3 (𝐴𝐵 → (𝐴𝐶 → (𝐶𝐵) ≠ ∅))
32necon2bd 2954 . 2 (𝐴𝐵 → ((𝐶𝐵) = ∅ → ¬ 𝐴𝐶))
43imp 406 1 ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cin 3962  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-in 3970  df-nul 4340
This theorem is referenced by:  peano5  7916  fnsuppres  8215  domunfican  9359  unwdomg  9622  dfac5  10167  ccatval2  14613  mreexexlem2d  17690  hauspwpwf1  24011
  Copyright terms: Public domain W3C validator