![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minel | Structured version Visualization version GIF version |
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
minel | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelcm 4465 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ 𝐵) ≠ ∅) | |
2 | 1 | expcom 415 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 → (𝐶 ∩ 𝐵) ≠ ∅)) |
3 | 2 | necon2bd 2957 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐶 ∩ 𝐵) = ∅ → ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | imp 408 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∩ cin 3948 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-in 3956 df-nul 4324 |
This theorem is referenced by: peano5 7884 peano5OLD 7885 fnsuppres 8176 domunfican 9320 unwdomg 9579 dfac5 10123 ccatval2 14528 mreexexlem2d 17589 hauspwpwf1 23491 |
Copyright terms: Public domain | W3C validator |