MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minel Structured version   Visualization version   GIF version

Theorem minel 4432
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
minel ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)

Proof of Theorem minel
StepHypRef Expression
1 inelcm 4431 . . . 4 ((𝐴𝐶𝐴𝐵) → (𝐶𝐵) ≠ ∅)
21expcom 413 . . 3 (𝐴𝐵 → (𝐴𝐶 → (𝐶𝐵) ≠ ∅))
32necon2bd 2942 . 2 (𝐴𝐵 → ((𝐶𝐵) = ∅ → ¬ 𝐴𝐶))
43imp 406 1 ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cin 3916  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-in 3924  df-nul 4300
This theorem is referenced by:  peano5  7872  fnsuppres  8173  domunfican  9279  unwdomg  9544  dfac5  10089  ccatval2  14550  mreexexlem2d  17613  hauspwpwf1  23881
  Copyright terms: Public domain W3C validator