MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minel Structured version   Visualization version   GIF version

Theorem minel 4415
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
minel ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)

Proof of Theorem minel
StepHypRef Expression
1 inelcm 4414 . . . 4 ((𝐴𝐶𝐴𝐵) → (𝐶𝐵) ≠ ∅)
21expcom 413 . . 3 (𝐴𝐵 → (𝐴𝐶 → (𝐶𝐵) ≠ ∅))
32necon2bd 2945 . 2 (𝐴𝐵 → ((𝐶𝐵) = ∅ → ¬ 𝐴𝐶))
43imp 406 1 ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cin 3897  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-v 3439  df-dif 3901  df-in 3905  df-nul 4283
This theorem is referenced by:  peano5  7831  fnsuppres  8129  domunfican  9215  unwdomg  9479  dfac5  10029  ccatval2  14489  mreexexlem2d  17555  hauspwpwf1  23905
  Copyright terms: Public domain W3C validator