Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minel | Structured version Visualization version GIF version |
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
minel | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelcm 4398 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ 𝐵) ≠ ∅) | |
2 | 1 | expcom 414 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 → (𝐶 ∩ 𝐵) ≠ ∅)) |
3 | 2 | necon2bd 2959 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐶 ∩ 𝐵) = ∅ → ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3885 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3431 df-dif 3889 df-in 3893 df-nul 4257 |
This theorem is referenced by: peano5 7730 peano5OLD 7731 fnsuppres 7994 domunfican 9074 unwdomg 9330 dfac5 9894 ccatval2 14293 mreexexlem2d 17364 hauspwpwf1 23148 |
Copyright terms: Public domain | W3C validator |