Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minel | Structured version Visualization version GIF version |
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
minel | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelcm 4379 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ 𝐵) ≠ ∅) | |
2 | 1 | expcom 417 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 → (𝐶 ∩ 𝐵) ≠ ∅)) |
3 | 2 | necon2bd 2956 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐶 ∩ 𝐵) = ∅ → ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | imp 410 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∩ cin 3865 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3410 df-dif 3869 df-in 3873 df-nul 4238 |
This theorem is referenced by: peano5 7671 peano5OLD 7672 fnsuppres 7933 domunfican 8944 unwdomg 9200 dfac5 9742 ccatval2 14135 mreexexlem2d 17148 hauspwpwf1 22884 |
Copyright terms: Public domain | W3C validator |