![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
2 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | imbitrdi 250 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2933 |
This theorem is referenced by: necon4bd 2952 necon4d 2956 minel 4458 disjiun 5126 eceqoveq 8813 en3lp 9606 infpssrlem5 10299 nneo 12644 zeo2 12647 sqrt2irr 16191 bezoutr1 16505 coprm 16647 dfphi2 16708 pltirr 18292 oddvdsnn0 19456 psgnodpmr 21453 supnfcls 23848 flimfnfcls 23856 metds0 24690 metdseq0 24694 metnrmlem1a 24698 sineq0 26377 lgsqr 27203 staddi 31971 stadd3i 31973 eulerpartlems 33851 erdszelem8 34680 finminlem 35694 ordcmp 35823 poimirlem18 37000 poimirlem21 37003 cvrnrefN 38646 trlnidatb 39542 flt4lem2 41903 |
Copyright terms: Public domain | W3C validator |