| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4bd 2945 necon4d 2949 minel 4419 disjiun 5083 eceqoveq 8756 en3lp 9529 infpssrlem5 10220 nneo 12578 zeo2 12581 sqrt2irr 16176 bezoutr1 16498 coprm 16640 dfphi2 16703 pltirr 18257 oddvdsnn0 19441 psgnodpmr 21515 supnfcls 23923 flimfnfcls 23931 metds0 24755 metdseq0 24759 metnrmlem1a 24763 sineq0 26449 lgsqr 27278 staddi 32208 stadd3i 32210 eulerpartlems 34327 erdszelem8 35170 finminlem 36291 ordcmp 36420 poimirlem18 37617 poimirlem21 37620 cvrnrefN 39260 trlnidatb 40156 flt4lem2 42620 |
| Copyright terms: Public domain | W3C validator |