![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
2 | df-ne 2939 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon4bd 2958 necon4d 2962 minel 4472 disjiun 5136 eceqoveq 8861 en3lp 9652 infpssrlem5 10345 nneo 12700 zeo2 12703 sqrt2irr 16282 bezoutr1 16603 coprm 16745 dfphi2 16808 pltirr 18393 oddvdsnn0 19577 psgnodpmr 21626 supnfcls 24044 flimfnfcls 24052 metds0 24886 metdseq0 24890 metnrmlem1a 24894 sineq0 26581 lgsqr 27410 staddi 32275 stadd3i 32277 eulerpartlems 34342 erdszelem8 35183 finminlem 36301 ordcmp 36430 poimirlem18 37625 poimirlem21 37628 cvrnrefN 39264 trlnidatb 40160 flt4lem2 42634 |
Copyright terms: Public domain | W3C validator |