| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2941 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2941 |
| This theorem is referenced by: necon4bd 2960 necon4d 2964 minel 4466 disjiun 5131 eceqoveq 8862 en3lp 9654 infpssrlem5 10347 nneo 12702 zeo2 12705 sqrt2irr 16285 bezoutr1 16606 coprm 16748 dfphi2 16811 pltirr 18380 oddvdsnn0 19562 psgnodpmr 21608 supnfcls 24028 flimfnfcls 24036 metds0 24872 metdseq0 24876 metnrmlem1a 24880 sineq0 26566 lgsqr 27395 staddi 32265 stadd3i 32267 eulerpartlems 34362 erdszelem8 35203 finminlem 36319 ordcmp 36448 poimirlem18 37645 poimirlem21 37648 cvrnrefN 39283 trlnidatb 40179 flt4lem2 42657 |
| Copyright terms: Public domain | W3C validator |