MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bd Structured version   Visualization version   GIF version

Theorem necon2bd 2956
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bd.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bd (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))

Proof of Theorem necon2bd
StepHypRef Expression
1 necon2bd.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 df-ne 2941 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2imbitrdi 251 . 2 (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵))
43con2d 134 1 (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2941
This theorem is referenced by:  necon4bd  2960  necon4d  2964  minel  4466  disjiun  5131  eceqoveq  8862  en3lp  9654  infpssrlem5  10347  nneo  12702  zeo2  12705  sqrt2irr  16285  bezoutr1  16606  coprm  16748  dfphi2  16811  pltirr  18380  oddvdsnn0  19562  psgnodpmr  21608  supnfcls  24028  flimfnfcls  24036  metds0  24872  metdseq0  24876  metnrmlem1a  24880  sineq0  26566  lgsqr  27395  staddi  32265  stadd3i  32267  eulerpartlems  34362  erdszelem8  35203  finminlem  36319  ordcmp  36448  poimirlem18  37645  poimirlem21  37648  cvrnrefN  39283  trlnidatb  40179  flt4lem2  42657
  Copyright terms: Public domain W3C validator