MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bd Structured version   Visualization version   GIF version

Theorem necon2bd 2944
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bd.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bd (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))

Proof of Theorem necon2bd
StepHypRef Expression
1 necon2bd.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 df-ne 2929 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2imbitrdi 251 . 2 (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵))
43con2d 134 1 (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  necon4bd  2948  necon4d  2952  minel  4416  disjiun  5079  eceqoveq  8746  en3lp  9504  infpssrlem5  10195  nneo  12554  zeo2  12557  sqrt2irr  16155  bezoutr1  16477  coprm  16619  dfphi2  16682  pltirr  18236  oddvdsnn0  19454  psgnodpmr  21525  supnfcls  23933  flimfnfcls  23941  metds0  24764  metdseq0  24768  metnrmlem1a  24772  sineq0  26458  lgsqr  27287  staddi  32221  stadd3i  32223  eulerpartlems  34368  erdszelem8  35230  finminlem  36351  ordcmp  36480  poimirlem18  37677  poimirlem21  37680  cvrnrefN  39320  trlnidatb  40215  flt4lem2  42679
  Copyright terms: Public domain W3C validator