Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
2 | df-ne 2943 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | syl6ib 250 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon4bd 2962 necon4d 2966 minel 4396 disjiun 5057 eceqoveq 8569 en3lp 9302 infpssrlem5 9994 nneo 12334 zeo2 12337 sqrt2irr 15886 bezoutr1 16202 coprm 16344 dfphi2 16403 pltirr 17968 oddvdsnn0 19067 psgnodpmr 20707 supnfcls 23079 flimfnfcls 23087 metds0 23919 metdseq0 23923 metnrmlem1a 23927 sineq0 25585 lgsqr 26404 staddi 30509 stadd3i 30511 eulerpartlems 32227 erdszelem8 33060 finminlem 34434 ordcmp 34563 poimirlem18 35722 poimirlem21 35725 cvrnrefN 37223 trlnidatb 38118 flt4lem2 40400 |
Copyright terms: Public domain | W3C validator |