| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4bd 2945 necon4d 2949 minel 4429 disjiun 5095 eceqoveq 8795 en3lp 9567 infpssrlem5 10260 nneo 12618 zeo2 12621 sqrt2irr 16217 bezoutr1 16539 coprm 16681 dfphi2 16744 pltirr 18294 oddvdsnn0 19474 psgnodpmr 21499 supnfcls 23907 flimfnfcls 23915 metds0 24739 metdseq0 24743 metnrmlem1a 24747 sineq0 26433 lgsqr 27262 staddi 32175 stadd3i 32177 eulerpartlems 34351 erdszelem8 35185 finminlem 36306 ordcmp 36435 poimirlem18 37632 poimirlem21 37635 cvrnrefN 39275 trlnidatb 40171 flt4lem2 42635 |
| Copyright terms: Public domain | W3C validator |