| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2927 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon4bd 2946 necon4d 2950 minel 4432 disjiun 5098 eceqoveq 8798 en3lp 9574 infpssrlem5 10267 nneo 12625 zeo2 12628 sqrt2irr 16224 bezoutr1 16546 coprm 16688 dfphi2 16751 pltirr 18301 oddvdsnn0 19481 psgnodpmr 21506 supnfcls 23914 flimfnfcls 23922 metds0 24746 metdseq0 24750 metnrmlem1a 24754 sineq0 26440 lgsqr 27269 staddi 32182 stadd3i 32184 eulerpartlems 34358 erdszelem8 35192 finminlem 36313 ordcmp 36442 poimirlem18 37639 poimirlem21 37642 cvrnrefN 39282 trlnidatb 40178 flt4lem2 42642 |
| Copyright terms: Public domain | W3C validator |