MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bd Structured version   Visualization version   GIF version

Theorem necon2bd 2962
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bd.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bd (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))

Proof of Theorem necon2bd
StepHypRef Expression
1 necon2bd.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 df-ne 2947 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2imbitrdi 251 . 2 (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵))
43con2d 134 1 (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2947
This theorem is referenced by:  necon4bd  2966  necon4d  2970  minel  4489  disjiun  5154  eceqoveq  8880  en3lp  9683  infpssrlem5  10376  nneo  12727  zeo2  12730  sqrt2irr  16297  bezoutr1  16616  coprm  16758  dfphi2  16821  pltirr  18405  oddvdsnn0  19586  psgnodpmr  21631  supnfcls  24049  flimfnfcls  24057  metds0  24891  metdseq0  24895  metnrmlem1a  24899  sineq0  26584  lgsqr  27413  staddi  32278  stadd3i  32280  eulerpartlems  34325  erdszelem8  35166  finminlem  36284  ordcmp  36413  poimirlem18  37598  poimirlem21  37601  cvrnrefN  39238  trlnidatb  40134  flt4lem2  42602
  Copyright terms: Public domain W3C validator