| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necon4bd 2952 necon4d 2956 minel 4441 disjiun 5107 eceqoveq 8836 en3lp 9628 infpssrlem5 10321 nneo 12677 zeo2 12680 sqrt2irr 16267 bezoutr1 16588 coprm 16730 dfphi2 16793 pltirr 18345 oddvdsnn0 19525 psgnodpmr 21550 supnfcls 23958 flimfnfcls 23966 metds0 24790 metdseq0 24794 metnrmlem1a 24798 sineq0 26485 lgsqr 27314 staddi 32227 stadd3i 32229 eulerpartlems 34392 erdszelem8 35220 finminlem 36336 ordcmp 36465 poimirlem18 37662 poimirlem21 37665 cvrnrefN 39300 trlnidatb 40196 flt4lem2 42670 |
| Copyright terms: Public domain | W3C validator |