MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bd Structured version   Visualization version   GIF version

Theorem necon2bd 2942
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bd.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bd (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))

Proof of Theorem necon2bd
StepHypRef Expression
1 necon2bd.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 df-ne 2927 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2imbitrdi 251 . 2 (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵))
43con2d 134 1 (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2927
This theorem is referenced by:  necon4bd  2946  necon4d  2950  minel  4432  disjiun  5098  eceqoveq  8798  en3lp  9574  infpssrlem5  10267  nneo  12625  zeo2  12628  sqrt2irr  16224  bezoutr1  16546  coprm  16688  dfphi2  16751  pltirr  18301  oddvdsnn0  19481  psgnodpmr  21506  supnfcls  23914  flimfnfcls  23922  metds0  24746  metdseq0  24750  metnrmlem1a  24754  sineq0  26440  lgsqr  27269  staddi  32182  stadd3i  32184  eulerpartlems  34358  erdszelem8  35192  finminlem  36313  ordcmp  36442  poimirlem18  37639  poimirlem21  37642  cvrnrefN  39282  trlnidatb  40178  flt4lem2  42642
  Copyright terms: Public domain W3C validator