| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon4bd 2948 necon4d 2952 minel 4416 disjiun 5079 eceqoveq 8746 en3lp 9504 infpssrlem5 10195 nneo 12554 zeo2 12557 sqrt2irr 16155 bezoutr1 16477 coprm 16619 dfphi2 16682 pltirr 18236 oddvdsnn0 19454 psgnodpmr 21525 supnfcls 23933 flimfnfcls 23941 metds0 24764 metdseq0 24768 metnrmlem1a 24772 sineq0 26458 lgsqr 27287 staddi 32221 stadd3i 32223 eulerpartlems 34368 erdszelem8 35230 finminlem 36351 ordcmp 36480 poimirlem18 37677 poimirlem21 37680 cvrnrefN 39320 trlnidatb 40215 flt4lem2 42679 |
| Copyright terms: Public domain | W3C validator |