| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2930 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon4bd 2949 necon4d 2953 minel 4415 disjiun 5081 eceqoveq 8752 en3lp 9511 infpssrlem5 10205 nneo 12563 zeo2 12566 sqrt2irr 16160 bezoutr1 16482 coprm 16624 dfphi2 16687 pltirr 18241 oddvdsnn0 19458 psgnodpmr 21529 supnfcls 23936 flimfnfcls 23944 metds0 24767 metdseq0 24771 metnrmlem1a 24775 sineq0 26461 lgsqr 27290 staddi 32228 stadd3i 32230 eulerpartlems 34394 erdszelem8 35263 finminlem 36383 ordcmp 36512 poimirlem18 37698 poimirlem21 37701 cvrnrefN 39401 trlnidatb 40296 flt4lem2 42765 |
| Copyright terms: Public domain | W3C validator |