![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bd | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon2bd.1 | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bd | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | |
2 | df-ne 2947 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
4 | 3 | con2d 134 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon4bd 2966 necon4d 2970 minel 4489 disjiun 5154 eceqoveq 8880 en3lp 9683 infpssrlem5 10376 nneo 12727 zeo2 12730 sqrt2irr 16297 bezoutr1 16616 coprm 16758 dfphi2 16821 pltirr 18405 oddvdsnn0 19586 psgnodpmr 21631 supnfcls 24049 flimfnfcls 24057 metds0 24891 metdseq0 24895 metnrmlem1a 24899 sineq0 26584 lgsqr 27413 staddi 32278 stadd3i 32280 eulerpartlems 34325 erdszelem8 35166 finminlem 36284 ordcmp 36413 poimirlem18 37598 poimirlem21 37601 cvrnrefN 39238 trlnidatb 40134 flt4lem2 42602 |
Copyright terms: Public domain | W3C validator |