| Step | Hyp | Ref
| Expression |
| 1 | | ensym 9043 |
. . . 4
⊢ (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵) |
| 2 | | bren 8995 |
. . . 4
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 3 | 1, 2 | sylib 218 |
. . 3
⊢ (𝐵 ≈ 𝐴 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 4 | | ssid 4006 |
. . . . . . . 8
⊢ 𝐴 ⊆ 𝐴 |
| 5 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 6 | 5 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → ((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (∅ ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵))) |
| 7 | 6 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → (((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) ↔ ((∅ ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)))) |
| 8 | | uneq1 4161 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → (𝑎 ∪ 𝑋) = (∅ ∪ 𝑋)) |
| 9 | | imaeq2 6074 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → (𝑓 “ 𝑎) = (𝑓 “ ∅)) |
| 10 | 9 | uneq1d 4167 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → ((𝑓 “ 𝑎) ∪ 𝑌) = ((𝑓 “ ∅) ∪ 𝑌)) |
| 11 | 8, 10 | breq12d 5156 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ (∅ ∪ 𝑋) ≼ ((𝑓 “ ∅) ∪ 𝑌))) |
| 12 | 11 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → (((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) ↔ ((∅ ∪ 𝑋) ≼ ((𝑓 “ ∅) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 13 | 7, 12 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ → ((((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) ↔ (((∅ ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((∅ ∪ 𝑋) ≼ ((𝑓 “ ∅) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 14 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ 𝐴 ↔ 𝑏 ⊆ 𝐴)) |
| 15 | 14 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → ((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵))) |
| 16 | 15 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) ↔ ((𝑏 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)))) |
| 17 | | uneq1 4161 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (𝑎 ∪ 𝑋) = (𝑏 ∪ 𝑋)) |
| 18 | | imaeq2 6074 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑓 “ 𝑎) = (𝑓 “ 𝑏)) |
| 19 | 18 | uneq1d 4167 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → ((𝑓 “ 𝑎) ∪ 𝑌) = ((𝑓 “ 𝑏) ∪ 𝑌)) |
| 20 | 17, 19 | breq12d 5156 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ (𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌))) |
| 21 | 20 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) ↔ ((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 22 | 16, 21 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → ((((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) ↔ (((𝑏 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 23 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ⊆ 𝐴 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐴)) |
| 24 | 23 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵))) |
| 25 | 24 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) ↔ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)))) |
| 26 | | uneq1 4161 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ∪ 𝑋) = ((𝑏 ∪ {𝑐}) ∪ 𝑋)) |
| 27 | | imaeq2 6074 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑓 “ 𝑎) = (𝑓 “ (𝑏 ∪ {𝑐}))) |
| 28 | 27 | uneq1d 4167 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑓 “ 𝑎) ∪ 𝑌) = ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌)) |
| 29 | 26, 28 | breq12d 5156 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ ((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌))) |
| 30 | 29 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) ↔ (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 31 | 25, 30 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) ↔ ((((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 32 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 33 | 32 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ↔ (𝐴 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵))) |
| 34 | 33 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) ↔ ((𝐴 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)))) |
| 35 | | uneq1 4161 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → (𝑎 ∪ 𝑋) = (𝐴 ∪ 𝑋)) |
| 36 | | imaeq2 6074 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐴 → (𝑓 “ 𝑎) = (𝑓 “ 𝐴)) |
| 37 | 36 | uneq1d 4167 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → ((𝑓 “ 𝑎) ∪ 𝑌) = ((𝑓 “ 𝐴) ∪ 𝑌)) |
| 38 | 35, 37 | breq12d 5156 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ (𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌))) |
| 39 | 38 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) ↔ ((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 40 | 34, 39 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((((𝑎 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑎 ∪ 𝑋) ≼ ((𝑓 “ 𝑎) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) ↔ (((𝐴 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 41 | | uncom 4158 |
. . . . . . . . . . . . 13
⊢ (∅
∪ 𝑋) = (𝑋 ∪ ∅) |
| 42 | | un0 4394 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∪ ∅) = 𝑋 |
| 43 | 41, 42 | eqtri 2765 |
. . . . . . . . . . . 12
⊢ (∅
∪ 𝑋) = 𝑋 |
| 44 | | ima0 6095 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ ∅) =
∅ |
| 45 | 44 | uneq1i 4164 |
. . . . . . . . . . . . 13
⊢ ((𝑓 “ ∅) ∪ 𝑌) = (∅ ∪ 𝑌) |
| 46 | | uncom 4158 |
. . . . . . . . . . . . . 14
⊢ (∅
∪ 𝑌) = (𝑌 ∪ ∅) |
| 47 | | un0 4394 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∪ ∅) = 𝑌 |
| 48 | 46, 47 | eqtri 2765 |
. . . . . . . . . . . . 13
⊢ (∅
∪ 𝑌) = 𝑌 |
| 49 | 45, 48 | eqtri 2765 |
. . . . . . . . . . . 12
⊢ ((𝑓 “ ∅) ∪ 𝑌) = 𝑌 |
| 50 | 43, 49 | breq12i 5152 |
. . . . . . . . . . 11
⊢ ((∅
∪ 𝑋) ≼ ((𝑓 “ ∅) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) |
| 51 | 50 | a1i 11 |
. . . . . . . . . 10
⊢
(((∅ ⊆ 𝐴
∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((∅ ∪ 𝑋) ≼ ((𝑓 “ ∅) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) |
| 52 | | ssun1 4178 |
. . . . . . . . . . . . . . 15
⊢ 𝑏 ⊆ (𝑏 ∪ {𝑐}) |
| 53 | | sstr2 3990 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → 𝑏 ⊆ 𝐴)) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → 𝑏 ⊆ 𝐴) |
| 55 | 54 | anim1i 615 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) → (𝑏 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵)) |
| 56 | 55 | anim1i 615 |
. . . . . . . . . . . 12
⊢ ((((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑏 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) |
| 57 | 56 | imim1i 63 |
. . . . . . . . . . 11
⊢ ((((𝑏 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) → ((((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 58 | | uncom 4158 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∪ {𝑐}) = ({𝑐} ∪ 𝑏) |
| 59 | 58 | uneq1i 4164 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 ∪ {𝑐}) ∪ 𝑋) = (({𝑐} ∪ 𝑏) ∪ 𝑋) |
| 60 | | unass 4172 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑐} ∪ 𝑏) ∪ 𝑋) = ({𝑐} ∪ (𝑏 ∪ 𝑋)) |
| 61 | 59, 60 | eqtri 2765 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∪ {𝑐}) ∪ 𝑋) = ({𝑐} ∪ (𝑏 ∪ 𝑋)) |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ((𝑏 ∪ {𝑐}) ∪ 𝑋) = ({𝑐} ∪ (𝑏 ∪ 𝑋))) |
| 63 | | imaundi 6169 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 “ (𝑏 ∪ {𝑐})) = ((𝑓 “ 𝑏) ∪ (𝑓 “ {𝑐})) |
| 64 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → 𝑓:𝐴–1-1-onto→𝐵) |
| 65 | | f1ofn 6849 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) |
| 66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → 𝑓 Fn 𝐴) |
| 67 | | ssun2 4179 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {𝑐} ⊆ (𝑏 ∪ {𝑐}) |
| 68 | | sstr2 3990 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({𝑐} ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → {𝑐} ⊆ 𝐴)) |
| 69 | 67, 68 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → {𝑐} ⊆ 𝐴) |
| 70 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑐 ∈ V |
| 71 | 70 | snss 4785 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 ∈ 𝐴 ↔ {𝑐} ⊆ 𝐴) |
| 72 | 69, 71 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 → 𝑐 ∈ 𝐴) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝑐 ∈ 𝐴) |
| 74 | 73 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → 𝑐 ∈ 𝐴) |
| 75 | | fnsnfv 6988 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 Fn 𝐴 ∧ 𝑐 ∈ 𝐴) → {(𝑓‘𝑐)} = (𝑓 “ {𝑐})) |
| 76 | 66, 74, 75 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → {(𝑓‘𝑐)} = (𝑓 “ {𝑐})) |
| 77 | 76 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (𝑓 “ {𝑐}) = {(𝑓‘𝑐)}) |
| 78 | 77 | uneq2d 4168 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ((𝑓 “ 𝑏) ∪ (𝑓 “ {𝑐})) = ((𝑓 “ 𝑏) ∪ {(𝑓‘𝑐)})) |
| 79 | 63, 78 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (𝑓 “ (𝑏 ∪ {𝑐})) = ((𝑓 “ 𝑏) ∪ {(𝑓‘𝑐)})) |
| 80 | 79 | uneq1d 4167 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) = (((𝑓 “ 𝑏) ∪ {(𝑓‘𝑐)}) ∪ 𝑌)) |
| 81 | | uncom 4158 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 “ 𝑏) ∪ {(𝑓‘𝑐)}) = ({(𝑓‘𝑐)} ∪ (𝑓 “ 𝑏)) |
| 82 | 81 | uneq1i 4164 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 “ 𝑏) ∪ {(𝑓‘𝑐)}) ∪ 𝑌) = (({(𝑓‘𝑐)} ∪ (𝑓 “ 𝑏)) ∪ 𝑌) |
| 83 | | unass 4172 |
. . . . . . . . . . . . . . . . . 18
⊢ (({(𝑓‘𝑐)} ∪ (𝑓 “ 𝑏)) ∪ 𝑌) = ({(𝑓‘𝑐)} ∪ ((𝑓 “ 𝑏) ∪ 𝑌)) |
| 84 | 82, 83 | eqtri 2765 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 “ 𝑏) ∪ {(𝑓‘𝑐)}) ∪ 𝑌) = ({(𝑓‘𝑐)} ∪ ((𝑓 “ 𝑏) ∪ 𝑌)) |
| 85 | 80, 84 | eqtrdi 2793 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) = ({(𝑓‘𝑐)} ∪ ((𝑓 “ 𝑏) ∪ 𝑌))) |
| 86 | 62, 85 | breq12d 5156 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ ({𝑐} ∪ (𝑏 ∪ 𝑋)) ≼ ({(𝑓‘𝑐)} ∪ ((𝑓 “ 𝑏) ∪ 𝑌)))) |
| 87 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ¬ 𝑐 ∈ 𝑏) |
| 88 | | incom 4209 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∩ 𝐴) = (𝐴 ∩ 𝑋) |
| 89 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (𝐴 ∩ 𝑋) = ∅) |
| 90 | 88, 89 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (𝑋 ∩ 𝐴) = ∅) |
| 91 | | minel 4466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 ∈ 𝐴 ∧ (𝑋 ∩ 𝐴) = ∅) → ¬ 𝑐 ∈ 𝑋) |
| 92 | 74, 90, 91 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ¬ 𝑐 ∈ 𝑋) |
| 93 | | ioran 986 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋) ↔ (¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋)) |
| 94 | | elun 4153 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ (𝑏 ∪ 𝑋) ↔ (𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋)) |
| 95 | 93, 94 | xchnxbir 333 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑐 ∈ (𝑏 ∪ 𝑋) ↔ (¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋)) |
| 96 | 87, 92, 95 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ¬ 𝑐 ∈ (𝑏 ∪ 𝑋)) |
| 97 | | simplr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵)) → ¬ 𝑐 ∈ 𝑏) |
| 98 | | f1of1 6847 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–1-1→𝐵) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝑓:𝐴–1-1→𝐵) |
| 100 | 54 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝑏 ⊆ 𝐴) |
| 101 | | f1elima 7283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑐 ∈ 𝐴 ∧ 𝑏 ⊆ 𝐴) → ((𝑓‘𝑐) ∈ (𝑓 “ 𝑏) ↔ 𝑐 ∈ 𝑏)) |
| 102 | 99, 73, 100, 101 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) → ((𝑓‘𝑐) ∈ (𝑓 “ 𝑏) ↔ 𝑐 ∈ 𝑏)) |
| 103 | 102 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) → ((𝑓‘𝑐) ∈ (𝑓 “ 𝑏) → 𝑐 ∈ 𝑏)) |
| 104 | 103 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵)) → ((𝑓‘𝑐) ∈ (𝑓 “ 𝑏) → 𝑐 ∈ 𝑏)) |
| 105 | 97, 104 | mtod 198 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵)) → ¬ (𝑓‘𝑐) ∈ (𝑓 “ 𝑏)) |
| 106 | 105 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ¬ (𝑓‘𝑐) ∈ (𝑓 “ 𝑏)) |
| 107 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) |
| 108 | 64, 107 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → 𝑓:𝐴⟶𝐵) |
| 109 | 108, 74 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (𝑓‘𝑐) ∈ 𝐵) |
| 110 | | incom 4209 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑌 ∩ 𝐵) = (𝐵 ∩ 𝑌) |
| 111 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (𝐵 ∩ 𝑌) = ∅) |
| 112 | 110, 111 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (𝑌 ∩ 𝐵) = ∅) |
| 113 | | minel 4466 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓‘𝑐) ∈ 𝐵 ∧ (𝑌 ∩ 𝐵) = ∅) → ¬ (𝑓‘𝑐) ∈ 𝑌) |
| 114 | 109, 112,
113 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ¬ (𝑓‘𝑐) ∈ 𝑌) |
| 115 | | ioran 986 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑓‘𝑐) ∈ (𝑓 “ 𝑏) ∨ (𝑓‘𝑐) ∈ 𝑌) ↔ (¬ (𝑓‘𝑐) ∈ (𝑓 “ 𝑏) ∧ ¬ (𝑓‘𝑐) ∈ 𝑌)) |
| 116 | | elun 4153 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑐) ∈ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ ((𝑓‘𝑐) ∈ (𝑓 “ 𝑏) ∨ (𝑓‘𝑐) ∈ 𝑌)) |
| 117 | 115, 116 | xchnxbir 333 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑓‘𝑐) ∈ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ (¬ (𝑓‘𝑐) ∈ (𝑓 “ 𝑏) ∧ ¬ (𝑓‘𝑐) ∈ 𝑌)) |
| 118 | 106, 114,
117 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → ¬ (𝑓‘𝑐) ∈ ((𝑓 “ 𝑏) ∪ 𝑌)) |
| 119 | | fvex 6919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑐) ∈ V |
| 120 | 70, 119 | domunsncan 9112 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑐 ∈ (𝑏 ∪ 𝑋) ∧ ¬ (𝑓‘𝑐) ∈ ((𝑓 “ 𝑏) ∪ 𝑌)) → (({𝑐} ∪ (𝑏 ∪ 𝑋)) ≼ ({(𝑓‘𝑐)} ∪ ((𝑓 “ 𝑏) ∪ 𝑌)) ↔ (𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌))) |
| 121 | 96, 118, 120 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (({𝑐} ∪ (𝑏 ∪ 𝑋)) ≼ ({(𝑓‘𝑐)} ∪ ((𝑓 “ 𝑏) ∪ 𝑌)) ↔ (𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌))) |
| 122 | 86, 121 | bitrd 279 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ (𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌))) |
| 123 | | bitr 805 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ (𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌)) ∧ ((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) |
| 124 | 123 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ (𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌)) → (((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 125 | 122, 124 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ (((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅))) → (((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 126 | 125 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → (((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 127 | 126 | a2d 29 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (((((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) → ((((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 128 | 57, 127 | syl5 34 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((((𝑏 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝑏 ∪ 𝑋) ≼ ((𝑓 “ 𝑏) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) → ((((𝑏 ∪ {𝑐}) ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → (((𝑏 ∪ {𝑐}) ∪ 𝑋) ≼ ((𝑓 “ (𝑏 ∪ {𝑐})) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 129 | 13, 22, 31, 40, 51, 128 | findcard2s 9205 |
. . . . . . . . 9
⊢ (𝐴 ∈ Fin → (((𝐴 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 130 | 129 | expd 415 |
. . . . . . . 8
⊢ (𝐴 ∈ Fin → ((𝐴 ⊆ 𝐴 ∧ 𝑓:𝐴–1-1-onto→𝐵) → (((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅) → ((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 131 | 4, 130 | mpani 696 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → (𝑓:𝐴–1-1-onto→𝐵 → (((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅) → ((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 132 | 131 | 3imp 1111 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵 ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) |
| 133 | | f1ofo 6855 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) |
| 134 | | foima 6825 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–onto→𝐵 → (𝑓 “ 𝐴) = 𝐵) |
| 135 | 133, 134 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑓 “ 𝐴) = 𝐵) |
| 136 | 135 | uneq1d 4167 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ((𝑓 “ 𝐴) ∪ 𝑌) = (𝐵 ∪ 𝑌)) |
| 137 | 136 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ (𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌))) |
| 138 | 137 | bibi1d 343 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) ↔ ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 139 | 138 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵 ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → (((𝐴 ∪ 𝑋) ≼ ((𝑓 “ 𝐴) ∪ 𝑌) ↔ 𝑋 ≼ 𝑌) ↔ ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌))) |
| 140 | 132, 139 | mpbid 232 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵 ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) |
| 141 | 140 | 3exp 1120 |
. . . 4
⊢ (𝐴 ∈ Fin → (𝑓:𝐴–1-1-onto→𝐵 → (((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 142 | 141 | exlimdv 1933 |
. . 3
⊢ (𝐴 ∈ Fin → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 143 | 3, 142 | syl5 34 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ≈ 𝐴 → (((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)))) |
| 144 | 143 | imp31 417 |
1
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) |