Proof of Theorem mreexexlem2d
Step | Hyp | Ref
| Expression |
1 | | mreexexlem2d.7 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
2 | 1 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
3 | | mreexexlem2d.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
4 | 3 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋)) |
5 | | mreexexlem2d.2 |
. . . . . . . . 9
⊢ 𝑁 = (mrCls‘𝐴) |
6 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
7 | | ssun2 4087 |
. . . . . . . . . . . . 13
⊢ 𝐻 ⊆ ((𝐹 ∖ {𝑌}) ∪ 𝐻) |
8 | | difundir 4195 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∪ 𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∖ {𝑌})) |
9 | | mreexexlem2d.9 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ∈ 𝐹) |
10 | | incom 4115 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∩ 𝐻) = (𝐻 ∩ 𝐹) |
11 | | mreexexlem2d.5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
12 | | ssdifin0 4397 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ⊆ (𝑋 ∖ 𝐻) → (𝐹 ∩ 𝐻) = ∅) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ∩ 𝐻) = ∅) |
14 | 10, 13 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐻 ∩ 𝐹) = ∅) |
15 | | minel 4380 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌 ∈ 𝐹 ∧ (𝐻 ∩ 𝐹) = ∅) → ¬ 𝑌 ∈ 𝐻) |
16 | 9, 14, 15 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑌 ∈ 𝐻) |
17 | | difsnb 4719 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑌 ∈ 𝐻 ↔ (𝐻 ∖ {𝑌}) = 𝐻) |
18 | 16, 17 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐻 ∖ {𝑌}) = 𝐻) |
19 | 18 | uneq2d 4077 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∖ {𝑌})) = ((𝐹 ∖ {𝑌}) ∪ 𝐻)) |
20 | 8, 19 | syl5eq 2790 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐹 ∪ 𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ 𝐻)) |
21 | 7, 20 | sseqtrrid 3954 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ⊆ ((𝐹 ∪ 𝐻) ∖ {𝑌})) |
22 | | mreexexlem2d.3 |
. . . . . . . . . . . . . . 15
⊢ 𝐼 = (mrInd‘𝐴) |
23 | | mreexexlem2d.8 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) |
24 | 22, 3, 23 | mrissd 17139 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ∪ 𝐻) ⊆ 𝑋) |
25 | 24 | ssdifssd 4057 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐹 ∪ 𝐻) ∖ {𝑌}) ⊆ 𝑋) |
26 | 3, 5, 25 | mrcssidd 17128 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐹 ∪ 𝐻) ∖ {𝑌}) ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
27 | 21, 26 | sstrd 3911 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
28 | 27 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝐻 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
29 | 6, 28 | unssd 4100 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → (𝐺 ∪ 𝐻) ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
30 | 4, 5 | mrcssvd 17126 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})) ⊆ 𝑋) |
31 | 4, 5, 29, 30 | mrcssd 17127 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → (𝑁‘(𝐺 ∪ 𝐻)) ⊆ (𝑁‘(𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) |
32 | 25 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → ((𝐹 ∪ 𝐻) ∖ {𝑌}) ⊆ 𝑋) |
33 | 4, 5, 32 | mrcidmd 17129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → (𝑁‘(𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) = (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
34 | 31, 33 | sseqtrd 3941 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → (𝑁‘(𝐺 ∪ 𝐻)) ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
35 | 2, 34 | sstrd 3911 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝐹 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
36 | 9 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝑌 ∈ 𝐹) |
37 | 35, 36 | sseldd 3902 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
38 | 23 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → (𝐹 ∪ 𝐻) ∈ 𝐼) |
39 | | ssun1 4086 |
. . . . . . 7
⊢ 𝐹 ⊆ (𝐹 ∪ 𝐻) |
40 | 39, 36 | sseldi 3899 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → 𝑌 ∈ (𝐹 ∪ 𝐻)) |
41 | 5, 22, 4, 38, 40 | ismri2dad 17140 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → ¬ 𝑌 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
42 | 37, 41 | pm2.65da 817 |
. . . 4
⊢ (𝜑 → ¬ 𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
43 | | nss 3963 |
. . . 4
⊢ (¬
𝐺 ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})) ↔ ∃𝑔(𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) |
44 | 42, 43 | sylib 221 |
. . 3
⊢ (𝜑 → ∃𝑔(𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) |
45 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → 𝑔 ∈ 𝐺) |
46 | | ssun1 4086 |
. . . . . . . . . 10
⊢ (𝐹 ∖ {𝑌}) ⊆ ((𝐹 ∖ {𝑌}) ∪ 𝐻) |
47 | 46, 20 | sseqtrrid 3954 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∖ {𝑌}) ⊆ ((𝐹 ∪ 𝐻) ∖ {𝑌})) |
48 | 47, 26 | sstrd 3911 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∖ {𝑌}) ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
49 | 48 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → (𝐹 ∖ {𝑌}) ⊆ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
50 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) |
51 | 49, 50 | ssneldd 3904 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝐹 ∖ {𝑌})) |
52 | | unass 4080 |
. . . . . . 7
⊢ (((𝐹 ∖ {𝑌}) ∪ 𝐻) ∪ {𝑔}) = ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) |
53 | 3 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → 𝐴 ∈ (Moore‘𝑋)) |
54 | | mreexexlem2d.4 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
55 | 54 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
56 | 23 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → (𝐹 ∪ 𝐻) ∈ 𝐼) |
57 | | difss 4046 |
. . . . . . . . . 10
⊢ (𝐹 ∖ {𝑌}) ⊆ 𝐹 |
58 | | unss1 4093 |
. . . . . . . . . 10
⊢ ((𝐹 ∖ {𝑌}) ⊆ 𝐹 → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ⊆ (𝐹 ∪ 𝐻)) |
59 | 57, 58 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ⊆ (𝐹 ∪ 𝐻)) |
60 | 53, 5, 22, 56, 59 | mrissmrid 17144 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ∈ 𝐼) |
61 | | mreexexlem2d.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
62 | 61 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
63 | 62 | difss2d 4049 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → 𝐺 ⊆ 𝑋) |
64 | 63, 45 | sseldd 3902 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → 𝑔 ∈ 𝑋) |
65 | 20 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ((𝐹 ∪ 𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ 𝐻)) |
66 | 65 | fveq2d 6721 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})) = (𝑁‘((𝐹 ∖ {𝑌}) ∪ 𝐻))) |
67 | 50, 66 | neleqtrd 2859 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝑁‘((𝐹 ∖ {𝑌}) ∪ 𝐻))) |
68 | 53, 5, 22, 55, 60, 64, 67 | mreexmrid 17146 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → (((𝐹 ∖ {𝑌}) ∪ 𝐻) ∪ {𝑔}) ∈ 𝐼) |
69 | 52, 68 | eqeltrrid 2843 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼) |
70 | 45, 51, 69 | jca32 519 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌})))) → (𝑔 ∈ 𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))) |
71 | 70 | ex 416 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → (𝑔 ∈ 𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))) |
72 | 71 | eximdv 1925 |
. . 3
⊢ (𝜑 → (∃𝑔(𝑔 ∈ 𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹 ∪ 𝐻) ∖ {𝑌}))) → ∃𝑔(𝑔 ∈ 𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))) |
73 | 44, 72 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔 ∈ 𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))) |
74 | | df-rex 3067 |
. 2
⊢
(∃𝑔 ∈
𝐺 (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼) ↔ ∃𝑔(𝑔 ∈ 𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))) |
75 | 73, 74 | sylibr 237 |
1
⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)) |