MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexlem2d Structured version   Visualization version   GIF version

Theorem mreexexlem2d 17618
Description: Used in mreexexlem4d 17620 to prove the induction step in mreexexd 17621. See the proof of Proposition 4.2.1 in [FaureFrolicher] p. 86 to 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexlem2d.9 (𝜑𝑌𝐹)
Assertion
Ref Expression
mreexexlem2d (𝜑 → ∃𝑔𝐺𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))
Distinct variable groups:   𝐹,𝑠,𝑔,𝑦,𝑧   𝐺,𝑠,𝑔,𝑦,𝑧   𝐻,𝑠,𝑔,𝑦,𝑧   𝜑,𝑠,𝑔,𝑦,𝑧   𝑌,𝑠,𝑔,𝑦,𝑧   𝑁,𝑠,𝑔,𝑦,𝑧   𝑋,𝑠,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑔,𝑠)   𝐼(𝑦,𝑧,𝑔,𝑠)   𝑋(𝑧,𝑔)

Proof of Theorem mreexexlem2d
StepHypRef Expression
1 mreexexlem2d.7 . . . . . . . 8 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
21adantr 480 . . . . . . 7 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐹 ⊆ (𝑁‘(𝐺𝐻)))
3 mreexexlem2d.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (Moore‘𝑋))
43adantr 480 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋))
5 mreexexlem2d.2 . . . . . . . . 9 𝑁 = (mrCls‘𝐴)
6 simpr 484 . . . . . . . . . 10 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
7 ssun2 4169 . . . . . . . . . . . . 13 𝐻 ⊆ ((𝐹 ∖ {𝑌}) ∪ 𝐻)
8 difundir 4276 . . . . . . . . . . . . . 14 ((𝐹𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∖ {𝑌}))
9 mreexexlem2d.9 . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝐹)
10 incom 4197 . . . . . . . . . . . . . . . . . 18 (𝐹𝐻) = (𝐻𝐹)
11 mreexexlem2d.5 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ⊆ (𝑋𝐻))
12 ssdifin0 4481 . . . . . . . . . . . . . . . . . . 19 (𝐹 ⊆ (𝑋𝐻) → (𝐹𝐻) = ∅)
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐻) = ∅)
1410, 13eqtr3id 2782 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻𝐹) = ∅)
15 minel 4461 . . . . . . . . . . . . . . . . 17 ((𝑌𝐹 ∧ (𝐻𝐹) = ∅) → ¬ 𝑌𝐻)
169, 14, 15syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑌𝐻)
17 difsnb 4805 . . . . . . . . . . . . . . . 16 𝑌𝐻 ↔ (𝐻 ∖ {𝑌}) = 𝐻)
1816, 17sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻 ∖ {𝑌}) = 𝐻)
1918uneq2d 4159 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∖ {𝑌})) = ((𝐹 ∖ {𝑌}) ∪ 𝐻))
208, 19eqtrid 2780 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ 𝐻))
217, 20sseqtrrid 4031 . . . . . . . . . . . 12 (𝜑𝐻 ⊆ ((𝐹𝐻) ∖ {𝑌}))
22 mreexexlem2d.3 . . . . . . . . . . . . . . 15 𝐼 = (mrInd‘𝐴)
23 mreexexlem2d.8 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝐻) ∈ 𝐼)
2422, 3, 23mrissd 17609 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) ⊆ 𝑋)
2524ssdifssd 4138 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻) ∖ {𝑌}) ⊆ 𝑋)
263, 5, 25mrcssidd 17598 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐻) ∖ {𝑌}) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
2721, 26sstrd 3988 . . . . . . . . . . 11 (𝜑𝐻 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
2827adantr 480 . . . . . . . . . 10 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐻 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
296, 28unssd 4182 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝐺𝐻) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
304, 5mrcssvd 17596 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘((𝐹𝐻) ∖ {𝑌})) ⊆ 𝑋)
314, 5, 29, 30mrcssd 17597 . . . . . . . 8 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘(𝐺𝐻)) ⊆ (𝑁‘(𝑁‘((𝐹𝐻) ∖ {𝑌}))))
3225adantr 480 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → ((𝐹𝐻) ∖ {𝑌}) ⊆ 𝑋)
334, 5, 32mrcidmd 17599 . . . . . . . 8 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘(𝑁‘((𝐹𝐻) ∖ {𝑌}))) = (𝑁‘((𝐹𝐻) ∖ {𝑌})))
3431, 33sseqtrd 4018 . . . . . . 7 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘(𝐺𝐻)) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
352, 34sstrd 3988 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐹 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
369adantr 480 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝑌𝐹)
3735, 36sseldd 3979 . . . . 5 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
3823adantr 480 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝐹𝐻) ∈ 𝐼)
39 ssun1 4168 . . . . . . 7 𝐹 ⊆ (𝐹𝐻)
4039, 36sselid 3976 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝑌 ∈ (𝐹𝐻))
415, 22, 4, 38, 40ismri2dad 17610 . . . . 5 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → ¬ 𝑌 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
4237, 41pm2.65da 816 . . . 4 (𝜑 → ¬ 𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
43 nss 4042 . . . 4 𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})) ↔ ∃𝑔(𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))))
4442, 43sylib 217 . . 3 (𝜑 → ∃𝑔(𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))))
45 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝑔𝐺)
46 ssun1 4168 . . . . . . . . . 10 (𝐹 ∖ {𝑌}) ⊆ ((𝐹 ∖ {𝑌}) ∪ 𝐻)
4746, 20sseqtrrid 4031 . . . . . . . . 9 (𝜑 → (𝐹 ∖ {𝑌}) ⊆ ((𝐹𝐻) ∖ {𝑌}))
4847, 26sstrd 3988 . . . . . . . 8 (𝜑 → (𝐹 ∖ {𝑌}) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
4948adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝐹 ∖ {𝑌}) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
50 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
5149, 50ssneldd 3981 . . . . . 6 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝐹 ∖ {𝑌}))
52 unass 4162 . . . . . . 7 (((𝐹 ∖ {𝑌}) ∪ 𝐻) ∪ {𝑔}) = ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔}))
533adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝐴 ∈ (Moore‘𝑋))
54 mreexexlem2d.4 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5623adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝐹𝐻) ∈ 𝐼)
57 difss 4127 . . . . . . . . . 10 (𝐹 ∖ {𝑌}) ⊆ 𝐹
58 unss1 4175 . . . . . . . . . 10 ((𝐹 ∖ {𝑌}) ⊆ 𝐹 → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ⊆ (𝐹𝐻))
5957, 58mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ⊆ (𝐹𝐻))
6053, 5, 22, 56, 59mrissmrid 17614 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ∈ 𝐼)
61 mreexexlem2d.6 . . . . . . . . . . 11 (𝜑𝐺 ⊆ (𝑋𝐻))
6261adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝐺 ⊆ (𝑋𝐻))
6362difss2d 4130 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝐺𝑋)
6463, 45sseldd 3979 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝑔𝑋)
6520adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ 𝐻))
6665fveq2d 6895 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝑁‘((𝐹𝐻) ∖ {𝑌})) = (𝑁‘((𝐹 ∖ {𝑌}) ∪ 𝐻)))
6750, 66neleqtrd 2851 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝑁‘((𝐹 ∖ {𝑌}) ∪ 𝐻)))
6853, 5, 22, 55, 60, 64, 67mreexmrid 17616 . . . . . . 7 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (((𝐹 ∖ {𝑌}) ∪ 𝐻) ∪ {𝑔}) ∈ 𝐼)
6952, 68eqeltrrid 2834 . . . . . 6 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)
7045, 51, 69jca32 515 . . . . 5 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))
7170ex 412 . . . 4 (𝜑 → ((𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))))
7271eximdv 1913 . . 3 (𝜑 → (∃𝑔(𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → ∃𝑔(𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))))
7344, 72mpd 15 . 2 (𝜑 → ∃𝑔(𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))
74 df-rex 3067 . 2 (∃𝑔𝐺𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼) ↔ ∃𝑔(𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))
7573, 74sylibr 233 1 (𝜑 → ∃𝑔𝐺𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  wral 3057  wrex 3066  cdif 3942  cun 3943  cin 3944  wss 3945  c0 4318  𝒫 cpw 4598  {csn 4624  cfv 6542  Moorecmre 17555  mrClscmrc 17556  mrIndcmri 17557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-mre 17559  df-mrc 17560  df-mri 17561
This theorem is referenced by:  mreexexlem4d  17620
  Copyright terms: Public domain W3C validator