![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatval2 | Structured version Visualization version GIF version |
Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
ccatval2 | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 14519 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | |
2 | 1 | 3adant3 1129 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
3 | eleq1 2813 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 ∈ (0..^(♯‘𝑆)) ↔ 𝐼 ∈ (0..^(♯‘𝑆)))) | |
4 | fveq2 6881 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑆‘𝑥) = (𝑆‘𝐼)) | |
5 | fvoveq1 7424 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑇‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝐼 − (♯‘𝑆)))) | |
6 | 3, 4, 5 | ifbieq12d 4548 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆))))) |
7 | fzodisj 13662 | . . . . . 6 ⊢ ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) = ∅ | |
8 | minel 4457 | . . . . . 6 ⊢ ((𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) = ∅) → ¬ 𝐼 ∈ (0..^(♯‘𝑆))) | |
9 | 7, 8 | mpan2 688 | . . . . 5 ⊢ (𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → ¬ 𝐼 ∈ (0..^(♯‘𝑆))) |
10 | 9 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ¬ 𝐼 ∈ (0..^(♯‘𝑆))) |
11 | 10 | iffalsed 4531 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
12 | 6, 11 | sylan9eqr 2786 | . 2 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 = 𝐼) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
13 | wrdfin 14478 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 ∈ Fin) | |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑆 ∈ Fin) |
15 | hashcl 14312 | . . . . 5 ⊢ (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0) | |
16 | fzoss1 13655 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ (ℤ≥‘0) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
17 | nn0uz 12860 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
18 | 16, 17 | eleq2s 2843 | . . . . 5 ⊢ ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
19 | 14, 15, 18 | 3syl 18 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
20 | 19 | sseld 3973 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))) |
21 | 20 | 3impia 1114 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
22 | fvexd 6896 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝐼 − (♯‘𝑆))) ∈ V) | |
23 | 2, 12, 21, 22 | fvmptd 6995 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 ifcif 4520 ↦ cmpt 5221 ‘cfv 6533 (class class class)co 7401 Fincfn 8934 0cc0 11105 + caddc 11108 − cmin 11440 ℕ0cn0 12468 ℤ≥cuz 12818 ..^cfzo 13623 ♯chash 14286 Word cword 14460 ++ cconcat 14516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 |
This theorem is referenced by: ccatval3 14525 ccatsymb 14528 ccatval21sw 14531 ccatlid 14532 ccatass 14534 ccatrn 14535 lswccatn0lsw 14537 ccats1val2 14573 ccat2s1p2 14576 ccatswrd 14614 ccatpfx 14647 pfxccatin12lem2 14677 pfxccatin12 14679 revccat 14712 cshwidxmod 14749 clwwlkccatlem 29677 ccatf1 32548 cycpmco2lem2 32720 cycpmco2lem4 32722 |
Copyright terms: Public domain | W3C validator |