MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatval2 Structured version   Visualization version   GIF version

Theorem ccatval2 14524
Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
ccatval2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆))))

Proof of Theorem ccatval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14519 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
213adant3 1129 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
3 eleq1 2813 . . . 4 (𝑥 = 𝐼 → (𝑥 ∈ (0..^(♯‘𝑆)) ↔ 𝐼 ∈ (0..^(♯‘𝑆))))
4 fveq2 6881 . . . 4 (𝑥 = 𝐼 → (𝑆𝑥) = (𝑆𝐼))
5 fvoveq1 7424 . . . 4 (𝑥 = 𝐼 → (𝑇‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝐼 − (♯‘𝑆))))
63, 4, 5ifbieq12d 4548 . . 3 (𝑥 = 𝐼 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))))
7 fzodisj 13662 . . . . . 6 ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) = ∅
8 minel 4457 . . . . . 6 ((𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ ((0..^(♯‘𝑆)) ∩ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) = ∅) → ¬ 𝐼 ∈ (0..^(♯‘𝑆)))
97, 8mpan2 688 . . . . 5 (𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → ¬ 𝐼 ∈ (0..^(♯‘𝑆)))
1093ad2ant3 1132 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ¬ 𝐼 ∈ (0..^(♯‘𝑆)))
1110iffalsed 4531 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑇‘(𝐼 − (♯‘𝑆))))
126, 11sylan9eqr 2786 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 = 𝐼) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = (𝑇‘(𝐼 − (♯‘𝑆))))
13 wrdfin 14478 . . . . . 6 (𝑆 ∈ Word 𝐵𝑆 ∈ Fin)
1413adantr 480 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 ∈ Fin)
15 hashcl 14312 . . . . 5 (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0)
16 fzoss1 13655 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
17 nn0uz 12860 . . . . . 6 0 = (ℤ‘0)
1816, 17eleq2s 2843 . . . . 5 ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
1914, 15, 183syl 18 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
2019sseld 3973 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))))
21203impia 1114 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
22 fvexd 6896 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝐼 − (♯‘𝑆))) ∈ V)
232, 12, 21, 22fvmptd 6995 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3466  cin 3939  wss 3940  c0 4314  ifcif 4520  cmpt 5221  cfv 6533  (class class class)co 7401  Fincfn 8934  0cc0 11105   + caddc 11108  cmin 11440  0cn0 12468  cuz 12818  ..^cfzo 13623  chash 14286  Word cword 14460   ++ cconcat 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517
This theorem is referenced by:  ccatval3  14525  ccatsymb  14528  ccatval21sw  14531  ccatlid  14532  ccatass  14534  ccatrn  14535  lswccatn0lsw  14537  ccats1val2  14573  ccat2s1p2  14576  ccatswrd  14614  ccatpfx  14647  pfxccatin12lem2  14677  pfxccatin12  14679  revccat  14712  cshwidxmod  14749  clwwlkccatlem  29677  ccatf1  32548  cycpmco2lem2  32720  cycpmco2lem4  32722
  Copyright terms: Public domain W3C validator