MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwdomg Structured version   Visualization version   GIF version

Theorem unwdomg 9036
Description: Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
unwdomg ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼* (𝐵𝐷))

Proof of Theorem unwdomg
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 9035 . . 3 (𝐴* 𝐵 → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
213ad2ant1 1130 . 2 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
3 brwdom3i 9035 . . . . 5 (𝐶* 𝐷 → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
433ad2ant2 1131 . . . 4 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
54adantr 484 . . 3 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
6 relwdom 9018 . . . . . . . . . 10 Rel ≼*
76brrelex1i 5576 . . . . . . . . 9 (𝐴* 𝐵𝐴 ∈ V)
86brrelex1i 5576 . . . . . . . . 9 (𝐶* 𝐷𝐶 ∈ V)
9 unexg 7456 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐶) ∈ V)
107, 8, 9syl2an 598 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴𝐶) ∈ V)
11103adant3 1129 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ∈ V)
1211adantr 484 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐴𝐶) ∈ V)
136brrelex2i 5577 . . . . . . . . 9 (𝐴* 𝐵𝐵 ∈ V)
146brrelex2i 5577 . . . . . . . . 9 (𝐶* 𝐷𝐷 ∈ V)
15 unexg 7456 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
1613, 14, 15syl2an 598 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐵𝐷) ∈ V)
17163adant3 1129 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ∈ V)
1817adantr 484 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐵𝐷) ∈ V)
19 elun 4079 . . . . . . . . . 10 (𝑦 ∈ (𝐴𝐶) ↔ (𝑦𝐴𝑦𝐶))
20 eqeq1 2805 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝑎 = (𝑓𝑏) ↔ 𝑦 = (𝑓𝑏)))
2120rexbidv 3259 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (∃𝑏𝐵 𝑎 = (𝑓𝑏) ↔ ∃𝑏𝐵 𝑦 = (𝑓𝑏)))
2221rspcva 3572 . . . . . . . . . . . . . . 15 ((𝑦𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑏𝐵 𝑦 = (𝑓𝑏))
23 fveq2 6649 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝑓𝑏) = (𝑓𝑧))
2423eqeq2d 2812 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → (𝑦 = (𝑓𝑏) ↔ 𝑦 = (𝑓𝑧)))
2524cbvrexvw 3400 . . . . . . . . . . . . . . . 16 (∃𝑏𝐵 𝑦 = (𝑓𝑏) ↔ ∃𝑧𝐵 𝑦 = (𝑓𝑧))
26 ssun1 4102 . . . . . . . . . . . . . . . . 17 𝐵 ⊆ (𝐵𝐷)
27 iftrue 4434 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 → if(𝑧𝐵, 𝑓, 𝑔) = 𝑓)
2827fveq1d 6651 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) = (𝑓𝑧))
2928eqeq2d 2812 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → (𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) ↔ 𝑦 = (𝑓𝑧)))
3029biimprd 251 . . . . . . . . . . . . . . . . . 18 (𝑧𝐵 → (𝑦 = (𝑓𝑧) → 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
3130reximia 3208 . . . . . . . . . . . . . . . . 17 (∃𝑧𝐵 𝑦 = (𝑓𝑧) → ∃𝑧𝐵 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
32 ssrexv 3985 . . . . . . . . . . . . . . . . 17 (𝐵 ⊆ (𝐵𝐷) → (∃𝑧𝐵 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
3326, 31, 32mpsyl 68 . . . . . . . . . . . . . . . 16 (∃𝑧𝐵 𝑦 = (𝑓𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3425, 33sylbi 220 . . . . . . . . . . . . . . 15 (∃𝑏𝐵 𝑦 = (𝑓𝑏) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3522, 34syl 17 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3635ancoms 462 . . . . . . . . . . . . 13 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3736adantlr 714 . . . . . . . . . . . 12 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3837adantll 713 . . . . . . . . . . 11 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
39 eqeq1 2805 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝑎 = (𝑔𝑏) ↔ 𝑦 = (𝑔𝑏)))
4039rexbidv 3259 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (∃𝑏𝐷 𝑎 = (𝑔𝑏) ↔ ∃𝑏𝐷 𝑦 = (𝑔𝑏)))
41 fveq2 6649 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝑔𝑏) = (𝑔𝑧))
4241eqeq2d 2812 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → (𝑦 = (𝑔𝑏) ↔ 𝑦 = (𝑔𝑧)))
4342cbvrexvw 3400 . . . . . . . . . . . . . . . 16 (∃𝑏𝐷 𝑦 = (𝑔𝑏) ↔ ∃𝑧𝐷 𝑦 = (𝑔𝑧))
4440, 43syl6bb 290 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → (∃𝑏𝐷 𝑎 = (𝑔𝑏) ↔ ∃𝑧𝐷 𝑦 = (𝑔𝑧)))
4544rspccva 3573 . . . . . . . . . . . . . 14 ((∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) ∧ 𝑦𝐶) → ∃𝑧𝐷 𝑦 = (𝑔𝑧))
46 ssun2 4103 . . . . . . . . . . . . . . 15 𝐷 ⊆ (𝐵𝐷)
47 minel 4376 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝐷 ∧ (𝐵𝐷) = ∅) → ¬ 𝑧𝐵)
4847ancoms 462 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → ¬ 𝑧𝐵)
4948iffalsed 4439 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → if(𝑧𝐵, 𝑓, 𝑔) = 𝑔)
5049fveq1d 6651 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) = (𝑔𝑧))
5150eqeq2d 2812 . . . . . . . . . . . . . . . . . 18 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) ↔ 𝑦 = (𝑔𝑧)))
5251biimprd 251 . . . . . . . . . . . . . . . . 17 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (𝑦 = (𝑔𝑧) → 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5352reximdva 3236 . . . . . . . . . . . . . . . 16 ((𝐵𝐷) = ∅ → (∃𝑧𝐷 𝑦 = (𝑔𝑧) → ∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5453imp 410 . . . . . . . . . . . . . . 15 (((𝐵𝐷) = ∅ ∧ ∃𝑧𝐷 𝑦 = (𝑔𝑧)) → ∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
55 ssrexv 3985 . . . . . . . . . . . . . . 15 (𝐷 ⊆ (𝐵𝐷) → (∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5646, 54, 55mpsyl 68 . . . . . . . . . . . . . 14 (((𝐵𝐷) = ∅ ∧ ∃𝑧𝐷 𝑦 = (𝑔𝑧)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5745, 56sylan2 595 . . . . . . . . . . . . 13 (((𝐵𝐷) = ∅ ∧ (∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) ∧ 𝑦𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5857anassrs 471 . . . . . . . . . . . 12 ((((𝐵𝐷) = ∅ ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦𝐶) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5958adantlrl 719 . . . . . . . . . . 11 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦𝐶) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6038, 59jaodan 955 . . . . . . . . . 10 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ (𝑦𝐴𝑦𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6119, 60sylan2b 596 . . . . . . . . 9 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6261expl 461 . . . . . . . 8 ((𝐵𝐷) = ∅ → (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
63623ad2ant3 1132 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
6463impl 459 . . . . . 6 ((((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6512, 18, 64wdom2d 9032 . . . . 5 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐴𝐶) ≼* (𝐵𝐷))
6665expr 460 . . . 4 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) → (𝐴𝐶) ≼* (𝐵𝐷)))
6766exlimdv 1934 . . 3 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) → (𝐴𝐶) ≼* (𝐵𝐷)))
685, 67mpd 15 . 2 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (𝐴𝐶) ≼* (𝐵𝐷))
692, 68exlimddv 1936 1 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼* (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wex 1781  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  cun 3882  cin 3883  wss 3884  c0 4246  ifcif 4428   class class class wbr 5033  cfv 6328  * cwdom 9016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-wdom 9017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator