MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwdomg Structured version   Visualization version   GIF version

Theorem unwdomg 8884
Description: Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
unwdomg ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼* (𝐵𝐷))

Proof of Theorem unwdomg
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 8883 . . 3 (𝐴* 𝐵 → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
213ad2ant1 1124 . 2 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
3 brwdom3i 8883 . . . . 5 (𝐶* 𝐷 → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
433ad2ant2 1125 . . . 4 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
54adantr 481 . . 3 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
6 relwdom 8866 . . . . . . . . . 10 Rel ≼*
76brrelex1i 5486 . . . . . . . . 9 (𝐴* 𝐵𝐴 ∈ V)
86brrelex1i 5486 . . . . . . . . 9 (𝐶* 𝐷𝐶 ∈ V)
9 unexg 7320 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐶) ∈ V)
107, 8, 9syl2an 595 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴𝐶) ∈ V)
11103adant3 1123 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ∈ V)
1211adantr 481 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐴𝐶) ∈ V)
136brrelex2i 5487 . . . . . . . . 9 (𝐴* 𝐵𝐵 ∈ V)
146brrelex2i 5487 . . . . . . . . 9 (𝐶* 𝐷𝐷 ∈ V)
15 unexg 7320 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
1613, 14, 15syl2an 595 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐵𝐷) ∈ V)
17163adant3 1123 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ∈ V)
1817adantr 481 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐵𝐷) ∈ V)
19 elun 4041 . . . . . . . . . 10 (𝑦 ∈ (𝐴𝐶) ↔ (𝑦𝐴𝑦𝐶))
20 eqeq1 2797 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝑎 = (𝑓𝑏) ↔ 𝑦 = (𝑓𝑏)))
2120rexbidv 3257 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (∃𝑏𝐵 𝑎 = (𝑓𝑏) ↔ ∃𝑏𝐵 𝑦 = (𝑓𝑏)))
2221rspcva 3552 . . . . . . . . . . . . . . 15 ((𝑦𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑏𝐵 𝑦 = (𝑓𝑏))
23 fveq2 6530 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝑓𝑏) = (𝑓𝑧))
2423eqeq2d 2803 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → (𝑦 = (𝑓𝑏) ↔ 𝑦 = (𝑓𝑧)))
2524cbvrexv 3401 . . . . . . . . . . . . . . . 16 (∃𝑏𝐵 𝑦 = (𝑓𝑏) ↔ ∃𝑧𝐵 𝑦 = (𝑓𝑧))
26 ssun1 4064 . . . . . . . . . . . . . . . . 17 𝐵 ⊆ (𝐵𝐷)
27 iftrue 4381 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 → if(𝑧𝐵, 𝑓, 𝑔) = 𝑓)
2827fveq1d 6532 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) = (𝑓𝑧))
2928eqeq2d 2803 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → (𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) ↔ 𝑦 = (𝑓𝑧)))
3029biimprd 249 . . . . . . . . . . . . . . . . . 18 (𝑧𝐵 → (𝑦 = (𝑓𝑧) → 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
3130reximia 3204 . . . . . . . . . . . . . . . . 17 (∃𝑧𝐵 𝑦 = (𝑓𝑧) → ∃𝑧𝐵 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
32 ssrexv 3950 . . . . . . . . . . . . . . . . 17 (𝐵 ⊆ (𝐵𝐷) → (∃𝑧𝐵 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
3326, 31, 32mpsyl 68 . . . . . . . . . . . . . . . 16 (∃𝑧𝐵 𝑦 = (𝑓𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3425, 33sylbi 218 . . . . . . . . . . . . . . 15 (∃𝑏𝐵 𝑦 = (𝑓𝑏) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3522, 34syl 17 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3635ancoms 459 . . . . . . . . . . . . 13 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3736adantlr 711 . . . . . . . . . . . 12 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3837adantll 710 . . . . . . . . . . 11 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
39 eqeq1 2797 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝑎 = (𝑔𝑏) ↔ 𝑦 = (𝑔𝑏)))
4039rexbidv 3257 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (∃𝑏𝐷 𝑎 = (𝑔𝑏) ↔ ∃𝑏𝐷 𝑦 = (𝑔𝑏)))
41 fveq2 6530 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝑔𝑏) = (𝑔𝑧))
4241eqeq2d 2803 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → (𝑦 = (𝑔𝑏) ↔ 𝑦 = (𝑔𝑧)))
4342cbvrexv 3401 . . . . . . . . . . . . . . . 16 (∃𝑏𝐷 𝑦 = (𝑔𝑏) ↔ ∃𝑧𝐷 𝑦 = (𝑔𝑧))
4440, 43syl6bb 288 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → (∃𝑏𝐷 𝑎 = (𝑔𝑏) ↔ ∃𝑧𝐷 𝑦 = (𝑔𝑧)))
4544rspccva 3553 . . . . . . . . . . . . . 14 ((∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) ∧ 𝑦𝐶) → ∃𝑧𝐷 𝑦 = (𝑔𝑧))
46 ssun2 4065 . . . . . . . . . . . . . . 15 𝐷 ⊆ (𝐵𝐷)
47 minel 4323 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝐷 ∧ (𝐵𝐷) = ∅) → ¬ 𝑧𝐵)
4847ancoms 459 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → ¬ 𝑧𝐵)
4948iffalsed 4386 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → if(𝑧𝐵, 𝑓, 𝑔) = 𝑔)
5049fveq1d 6532 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) = (𝑔𝑧))
5150eqeq2d 2803 . . . . . . . . . . . . . . . . . 18 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) ↔ 𝑦 = (𝑔𝑧)))
5251biimprd 249 . . . . . . . . . . . . . . . . 17 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (𝑦 = (𝑔𝑧) → 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5352reximdva 3234 . . . . . . . . . . . . . . . 16 ((𝐵𝐷) = ∅ → (∃𝑧𝐷 𝑦 = (𝑔𝑧) → ∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5453imp 407 . . . . . . . . . . . . . . 15 (((𝐵𝐷) = ∅ ∧ ∃𝑧𝐷 𝑦 = (𝑔𝑧)) → ∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
55 ssrexv 3950 . . . . . . . . . . . . . . 15 (𝐷 ⊆ (𝐵𝐷) → (∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5646, 54, 55mpsyl 68 . . . . . . . . . . . . . 14 (((𝐵𝐷) = ∅ ∧ ∃𝑧𝐷 𝑦 = (𝑔𝑧)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5745, 56sylan2 592 . . . . . . . . . . . . 13 (((𝐵𝐷) = ∅ ∧ (∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) ∧ 𝑦𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5857anassrs 468 . . . . . . . . . . . 12 ((((𝐵𝐷) = ∅ ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦𝐶) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5958adantlrl 716 . . . . . . . . . . 11 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦𝐶) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6038, 59jaodan 950 . . . . . . . . . 10 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ (𝑦𝐴𝑦𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6119, 60sylan2b 593 . . . . . . . . 9 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6261expl 458 . . . . . . . 8 ((𝐵𝐷) = ∅ → (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
63623ad2ant3 1126 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
6463impl 456 . . . . . 6 ((((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6512, 18, 64wdom2d 8880 . . . . 5 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐴𝐶) ≼* (𝐵𝐷))
6665expr 457 . . . 4 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) → (𝐴𝐶) ≼* (𝐵𝐷)))
6766exlimdv 1909 . . 3 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) → (𝐴𝐶) ≼* (𝐵𝐷)))
685, 67mpd 15 . 2 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (𝐴𝐶) ≼* (𝐵𝐷))
692, 68exlimddv 1911 1 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼* (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 842  w3a 1078   = wceq 1520  wex 1759  wcel 2079  wral 3103  wrex 3104  Vcvv 3432  cun 3852  cin 3853  wss 3854  c0 4206  ifcif 4375   class class class wbr 4956  cfv 6217  * cwdom 8857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-wdom 8859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator