Step | Hyp | Ref
| Expression |
1 | | mnuprdlem4.1 |
. . . 4
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
2 | | mnuprdlem4.3 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑀) |
3 | | mnuprdlem4.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
4 | 1, 2, 3 | mnu0eld 41772 |
. . . . . 6
⊢ (𝜑 → ∅ ∈ 𝑈) |
5 | 1, 2, 4 | mnusnd 41775 |
. . . . 5
⊢ (𝜑 → {∅} ∈ 𝑈) |
6 | | 0ss 4327 |
. . . . 5
⊢ ∅
⊆ {∅} |
7 | | ssid 3939 |
. . . . 5
⊢ {∅}
⊆ {∅} |
8 | 1, 2, 5, 6, 7 | mnuprss2d 41777 |
. . . 4
⊢ (𝜑 → {∅, {∅}}
∈ 𝑈) |
9 | | mnuprdlem4.2 |
. . . . 5
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} |
10 | 1, 2, 3 | mnusnd 41775 |
. . . . . . 7
⊢ (𝜑 → {𝐴} ∈ 𝑈) |
11 | | 0ss 4327 |
. . . . . . 7
⊢ ∅
⊆ {𝐴} |
12 | | ssid 3939 |
. . . . . . 7
⊢ {𝐴} ⊆ {𝐴} |
13 | 1, 2, 10, 11, 12 | mnuprss2d 41777 |
. . . . . 6
⊢ (𝜑 → {∅, {𝐴}} ∈ 𝑈) |
14 | | mnuprdlem4.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑈) |
15 | | 0ss 4327 |
. . . . . . . 8
⊢ ∅
⊆ 𝐵 |
16 | | ssid 3939 |
. . . . . . . 8
⊢ 𝐵 ⊆ 𝐵 |
17 | 1, 2, 14, 15, 16 | mnuprss2d 41777 |
. . . . . . 7
⊢ (𝜑 → {∅, 𝐵} ∈ 𝑈) |
18 | | snsspr1 4744 |
. . . . . . 7
⊢ {∅}
⊆ {∅, 𝐵} |
19 | | snsspr2 4745 |
. . . . . . 7
⊢ {𝐵} ⊆ {∅, 𝐵} |
20 | 1, 2, 17, 18, 19 | mnuprss2d 41777 |
. . . . . 6
⊢ (𝜑 → {{∅}, {𝐵}} ∈ 𝑈) |
21 | 13, 20 | prssd 4752 |
. . . . 5
⊢ (𝜑 → {{∅, {𝐴}}, {{∅}, {𝐵}}} ⊆ 𝑈) |
22 | 9, 21 | eqsstrid 3965 |
. . . 4
⊢ (𝜑 → 𝐹 ⊆ 𝑈) |
23 | 1, 2, 8, 22 | mnuop3d 41778 |
. . 3
⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
24 | | simprl 767 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝑤 ∈ 𝑈) |
25 | | eleq2w 2822 |
. . . . . 6
⊢ (𝑎 = 𝑤 → (𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑤)) |
26 | | eleq2w 2822 |
. . . . . 6
⊢ (𝑎 = 𝑤 → (𝐵 ∈ 𝑎 ↔ 𝐵 ∈ 𝑤)) |
27 | 25, 26 | anbi12d 630 |
. . . . 5
⊢ (𝑎 = 𝑤 → ((𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎) ↔ (𝐴 ∈ 𝑤 ∧ 𝐵 ∈ 𝑤))) |
28 | 27 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑎 = 𝑤) → ((𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎) ↔ (𝐴 ∈ 𝑤 ∧ 𝐵 ∈ 𝑤))) |
29 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝐴 ∈ 𝑈) |
30 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝐵 ∈ 𝑈) |
31 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝜑 |
32 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝑤 ∈ 𝑈 |
33 | | nfra1 3142 |
. . . . . . . . . 10
⊢
Ⅎ𝑖∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
34 | 32, 33 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
35 | 31, 34 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
36 | 9, 35 | mnuprdlem3 41781 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) |
37 | | ralim 3082 |
. . . . . . . 8
⊢
(∀𝑖 ∈
{∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → (∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
38 | 37 | ad2antll 725 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → (∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
39 | 36, 38 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
40 | 9, 29, 30, 39 | mnuprdlem1 41779 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝐴 ∈ 𝑤) |
41 | | mnuprdlem4.6 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝐴 = ∅) |
42 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ¬ 𝐴 = ∅) |
43 | 9, 30, 42, 39 | mnuprdlem2 41780 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝐵 ∈ 𝑤) |
44 | 40, 43 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → (𝐴 ∈ 𝑤 ∧ 𝐵 ∈ 𝑤)) |
45 | 24, 28, 44 | rspcedvd 3555 |
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ {∅, {∅}} (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∃𝑎 ∈ 𝑈 (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎)) |
46 | 23, 45 | rexlimddv 3219 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ 𝑈 (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎)) |
47 | 2 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎))) → 𝑈 ∈ 𝑀) |
48 | | simprl 767 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎))) → 𝑎 ∈ 𝑈) |
49 | | simprrl 777 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎))) → 𝐴 ∈ 𝑎) |
50 | | simprrr 778 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎))) → 𝐵 ∈ 𝑎) |
51 | 49, 50 | prssd 4752 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎))) → {𝐴, 𝐵} ⊆ 𝑎) |
52 | 1, 47, 48, 51 | mnussd 41770 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ (𝐴 ∈ 𝑎 ∧ 𝐵 ∈ 𝑎))) → {𝐴, 𝐵} ∈ 𝑈) |
53 | 46, 52 | rexlimddv 3219 |
1
⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |