Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuss2d Structured version   Visualization version   GIF version

Theorem mnuss2d 40896
Description: mnussd 40895 with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuss2d.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuss2d.2 (𝜑𝑈𝑀)
mnuss2d.3 (𝜑 → ∃𝑥𝑈 𝐴𝑥)
Assertion
Ref Expression
mnuss2d (𝜑𝐴𝑈)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑈   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuss2d
StepHypRef Expression
1 mnuss2d.3 . 2 (𝜑 → ∃𝑥𝑈 𝐴𝑥)
2 mnuss2d.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
3 mnuss2d.2 . . . 4 (𝜑𝑈𝑀)
43adantr 484 . . 3 ((𝜑 ∧ (𝑥𝑈𝐴𝑥)) → 𝑈𝑀)
5 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝑈𝐴𝑥)) → 𝑥𝑈)
6 simprr 772 . . 3 ((𝜑 ∧ (𝑥𝑈𝐴𝑥)) → 𝐴𝑥)
72, 4, 5, 6mnussd 40895 . 2 ((𝜑 ∧ (𝑥𝑈𝐴𝑥)) → 𝐴𝑈)
81, 7rexlimddv 3283 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2115  {cab 2802  wral 3133  wrex 3134  wss 3919  𝒫 cpw 4522   cuni 4824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-in 3926  df-ss 3936  df-pw 4524  df-uni 4825
This theorem is referenced by:  mnupwd  40899  mnuunid  40909  mnurndlem2  40914
  Copyright terms: Public domain W3C validator