Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnussd Structured version   Visualization version   GIF version

Theorem mnussd 44259
Description: Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnussd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnussd.2 (𝜑𝑈𝑀)
mnussd.3 (𝜑𝐴𝑈)
mnussd.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
mnussd (𝜑𝐵𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙   𝑈,𝑟,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnussd
Dummy variables 𝑤 𝑓 𝑖 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnussd.1 . . . 4 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnussd.2 . . . 4 (𝜑𝑈𝑀)
3 mnussd.3 . . . 4 (𝜑𝐴𝑈)
41, 2, 3mnuop123d 44258 . . 3 (𝜑 → (𝒫 𝐴𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
54simpld 494 . 2 (𝜑 → 𝒫 𝐴𝑈)
6 mnussd.4 . . 3 (𝜑𝐵𝐴)
73, 6sselpwd 5334 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
85, 7sseldd 3996 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  wss 3963  𝒫 cpw 4605   cuni 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-in 3970  df-ss 3980  df-pw 4607  df-uni 4913
This theorem is referenced by:  mnuss2d  44260  mnu0eld  44261  mnusnd  44264  mnuprssd  44265  mnuprdlem4  44271  mnutrcld  44275
  Copyright terms: Public domain W3C validator